
E. Vitali Lecture 8. Stochastic differential equations

We consider again the motion of a pollen grain inside a glass of wa-
ter. We can use the formalism of the stochastic calculus to provide a
description of the motion more detailed than the one that has driven us
to brownian motion. We would like to write down a Newton equation of
motion for the pollen grain which takes into account, at a phenomeno-
logical level, the interaction between the grain and the water molecules.
The presence of the water gives rise both to a velocity dependent drag
force of the form −ζv(t), arising from the viscosity of the water, de-
scribed through a friction coefficient ζ > 0, and to a random force, say
f(t), a noise representing the random collisions with water molecules
surrounding the grain at a given instant t.

The simplest model of such a random force uses the famous white
noise, usually introduced as a gaussian noise with zero mean and without
memory of the past: the correlations decay faster than any time scale
important in the physical description of the motion. Intuitively, one may
define the withe noise in the following way:

E[fi(t)] = 0, Cov(fi(t), fj(s)) ∝ δijδ(t− s), i, j = 1, . . . , 3 (1)

Unfortunately, no such stochastic process exists. Nevertheless, we show
now that the above mentioned properties could characterize the time
derivative of the brownian motion, if it existed. To this aim, let’s define:

wt,h =
Bt+h −Bt

h
(2)

for a finite increment h. By inspection we see that wt,h ∼ N(0, 1
h
).

Moreover, for s < t:

Cov (wt,hws,h) =
1

h2
(s+ h−min(t, s + h)) (3)

Letting h → 0, the above expression tends to 0 whenever s 6= t and to
∞ in the special case s = t, justifying δ(t− s).

The formalism of the previous chapter induces us to give a rigorous
definition of a white noise term choosing:

”dtf(t)” ∝ dBt (4)

and plugging the Ito differential inside a stochastic equation of motion.
Using the notations xt and vt, two processes taking values in R

3, for
the position and velocity of the pollen grain at the instant t, we write a
Newton equation in the form of a Langevin equation:

{

dxt = vtdt
dvt = −ζvtdt+ σdBt

(5)

The above equation, from a formal point of view, is simply a stochastic
differential for a process Xt = (xt, vt) taking values in R

6, having assigned
a three-dimensional brownian motion:

dXt = −AXtdt+ SdBt (6)

where A is a constant 6× 6-matrix and S a constant 6× 3 matrix.
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Turning to the integral form, we have:

Xt = X0 −

∫ t

0

AXsds+

∫ t

0

SdBs (7)

We observe that the avove formula is not a solution, but an equation,
since the unknown process X appearso also in the right hand side, and
has still to be determined.

In order to build up an explicit solution, we use the ansatz:

Xt = e−AtUt (8)

and apply Ito formula to the function f(x, t) = e−Atx (the second deriva-
tives with respect to xixj vanish). We get:

dXt = d
(

e−AtUt

)

= −Ae−AtUtdt+ e−AtdUt = −AXtdt+ e−AtdUt (9)

and thus, from a comparison with the equation of motion for X :

dUt = eAtSσdBt (10)

Introducing a deterministic initial condition:

X0 = U0 = (x0, v0) (11)

we have the explicit solution of the Langevin equation:

Xt = e−AtX0 +

∫ t

0

e−A(t−s)SdBs (12)

describing the random motion of the pollen grain.
In order to keep the notations simple, we turn now to the one-

dimensional case, where:

A =

(

0 −1
0 ζ

)

, S =

(

0
σ

)

(13)

It is simple to build up the exponential:

e−At =

(

1 (1− e−ζt)/ζ
0 e−ζt

)

(14)

so that the solution is:

(

xt
vt

)

=

(

1 (1− e−ζt)/ζ
0 e−ζt

)(

x0
v0

)

+

∫ t

0

(

1 (1− e−ζ(t−s))/ζ
0 e−ζ(t−s)

)(

0
σ

)

dBs

(15)
that is:

{

xt = x0 +
(1−e−ζt)

ζ
v0 +

∫ t

0
(1−e−ζ(t−s))

ζ
σdBs

vt = e−ζtv0 +
∫ t

0
e−ζ(t−s)σdBs

(16)

Both position and velocity display a deterministic time dependence, on
a time scale 1/ζ related to the viscous drag, and a random part, arising
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from the collisions with water molecules. This random terms have the
form of Wiener integrals of functions of the variable s, square-integrable
on the interval (0, t), for each value of t. We know that one-dimensional
Wiener integrals are normal random variables with zero expectation and
variance equal to the time integral of the square of the function.

Thus:

E[xt] = x0 +
(1− e−ζt)

ζ
v0, V ar(xt) =

σ2

ζ2

∫ t

0

(

1− e−ζ(t−s)
)2
ds (17)

Explicitely:

V ar(xt) =
σ2

ζ2

∫ t

0

(

1− 2e−ζ(t−s) + e−2ζ(t−s)
)

ds = (18)

= σ2

ζ2

(

t− 21−e−ζt

ζ
+ 1−e−2ζt

2ζ

)

=

= σ2t
ζ2

+ σ2

2ζ3
(−3 + 4e−ζt − e−2ζt)

As far as the velocity is concerned, we have:

E[vt] = e−ζtv0, V ar(vt) = σ2

∫ t

0

(

e−ζ(t−s)
)2
ds = σ21− e

−2ζt

2ζ
(19)

Let’s write explicitely the probability density for the velocity of the pollen
grain at the instant t:

p(v, t) =

(

2ζ

2πσ2(1− e−2ζt)

)1/2

exp

(

−
2ζ
(

v − e−ζtv0
)2

2σ2(1− e−2ζt)

)

(20)

In the realm of liquid state theroy, a very important object is the
autocorrelation of velocity:

Cv(τ) = E [vt+τvt] (21)

For an explicit calculation of this dynamic correlation function we need
an important property of Wiener integrals:

{

It =

∫ t

0

f(s)dBs

}

t

, f ∈ L2(0, T ), 0 ≤ t ≤ T (22)

If f is piecewise constant:

f(t) =

K
∑

i=1

ck1[ti−1,ti)(t), t0 = 0 (23)

It is a linear combination of increments of the brownian motion:

It = c1(Bt1 −B0) + c2(Bt2 −Bt1) + · · ·+ cn(Bt −Btn−1), n ≤ K (24)
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and it is thus normal, as we already know. Given another instant t′, we
have:

It′ = c1(Bt1−B0)+ c2(Bt2−Bt1)+ · · ·+ cm(Bt′−Btm−1), m ≤ K (25)

where the time instants coincide with the ones in the expression for It.
Let’s evaluate:

E[ItIt′ ] =

n
∑

i=1

m
∑

j=1

cicjE[(Bti −Bti−1
)(Btj − Btj−1

)] (26)

If i or j are larger that min(m,n), and whenever i > j or i < j, the
two random variables in the expectation are independent, so that the
contribution to the sum vanishes. We thus conclude that:

E[ItIt′ ] =

min(n,m)
∑

i=1

c2i (ti+1 − ti) =

∫ min(t,t′)

0

f 2(s)ds (27)

This results holds also for any f ∈ L2(0, T ), as can be shown by approx-
imating f with pointwise constant functions.

Putting all together, we have:

E[vtvt′ ] = v20e
−ζ(t+t′) + e−ζ(t+t′)σ2

∫ min(t,t′)

0

e2ζsds (28)

ossia:

E[vtvt′ ] = v20e
−ζ(t+t′) + e−ζ(t+t′)σ

2

2ζ

(

e2ζ min(t,t′) − 1
)

(29)

or, equivalently:

E[vtvt′ ] =
σ2

2ζ
e−ζ|t−t′| +

(

v20 −
σ2

2ζ

)

e−ζ(t+t′) (30)

so that, for τ > 0:

Cv(τ) = E [vt+τvt] =
σ2

2ζ
e−ζτ +

(

v20 −
σ2

2ζ

)

e−ζ(2t+τ) (31)

Since we have an analytic solution, we can investigate the limit t →
+∞. From a physical point of view, this means that we study the random
processes when t >> 1/ζ , the latter playing the role of a relaxation time.

We have:

E[vt] = e−ζtv0
t→+∞
−→ 0, V ar(vt) = σ21− e

−2ζt

2ζ

t→+∞
−→

σ2

2ζ
(32)

so that, as can be checked by considering the characteristic function, vt
converges in law to a random variable N(0, σ

2

2ζ
), with density:

p∞(v) =

(

2ζ

2πσ2

)1/2

exp

(

−
2ζv2

2σ2

)

(33)
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If the glass of water is kept at a temperature T , the above mentioned
convergence in law corresponds to a thermalization of the pollen grain,
leading to postulate the relation:

2ζ

σ2
=

m

kBT
(34)

m being the mass of the grain. In this way, the equilibrium density has
the typical form (in one dimension):

p∞(v) =

(

m

2πkBT

)1/2

exp

(

−
mv2

2kBT

)

(35)

Moreover, for t >> 1/ζ , the autocorrelation of the velocity has the ex-
ponential form:

Cv(τ) = E [vt+τvt]
t>>1/ζ
≃

kBT

m
e−ζτ , τ ≥ 0 (36)

As far as the position is concerned, we have, in one dimension, the
important result:

E[xt] = x0 +
(1− e−ζt)

ζ
v0

t→+∞
−→ x0 + ζ−1v0 (37)

which supports the interpretation of ζ−1 as relaxation time. The variance
provides information about the quadratic mean displacement:

V ar(xt)
t→+∞
≃

σ2

ζ2
t = 2

kBT

ζm
t (38)

growing linearly with time.

I. GENERAL INTRODUCTION

In study we have performed Newton equation has become a differential
equation involving stochastic processed, relying on the Ito integral and
differential we have presented in the previous chapter. Now we shall
present the general theory of stochastic differential equations with white
noise.

We fix once and for all a time interval [0, T ]: any instant of time that
wil appear from now on belongs to this interval. Let moreover b and σ
be measurable functions:

b : Rm × [0, T ]→ R
m, σ : Rm × [0, T ]→ R

m×d (39)

We will use the name drift for b and the name diffusion coefficient for
σ.

We consider the following equation for an unknown process Xt taking
values in R

m:

{

dXt = b(Xt, t)dt+ σ(Xt, t)dBt

Xu = η, u ≤ t
(40)

η being a m-dimensional random variable.
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At this point we have written only a formal equality: we do not even
have fixed a stochastic basis. Let’s define what do we mean when talking
about a solution.

Definizione 1 We say that a process:

ξ =
(

Ω,F , {Ft}t∈[0,T ] , {ξt}t∈[0,T ] , P
)

(41)

is a solution of the stochastic differential equation (40) se:

1. (Ω,F , {Ft}t , {Bt}t , P ) is a continuous d-dimensional brownian
motion with increments independent of the past defined inside a
stochastic basis satisfying usual ipothesis;

2. η is Fu-measurable;

3. for all t ∈ [u, T ], we have:

ξt = η +

∫ t

u

b(ξs, s)ds+

∫ t

u

σ(ξs, s)dBs (42)

We stress that implicitely it is assumed that the two integrals are well
defined.

We observe also that the stochastic basis and the brownian motion
are not fixed a priori in general. When we have assigned once and for all
a stochastic basis and a brownian motion before discussing the equation,
we speak about strong solutions.

We are going now to assign working ipothesis, closely resembling the
ones required in the realm of ordinary differential equations:

Definizione 2 (Ipothesis (A)) We say that b and σ satisfy the ipoth-
esis (A) if they are measurable in (x, t) and if there exist L > 0 and
M > 0 such that, for each x, y ∈ R

d, and t ∈ [0, T ]], the following
sub-linear growth and global Lipschitz conditions holds:

|b(x, t)| ≤ M(1 + |x|), |σ(x, t)| ≤ M(1 + |x|) (43)

|b(x, t)− b(y, t)| ≤ L|x− y|, |σ(x, t)− σ(y, t)| ≤ L|x− y| (44)

Under such ipothesis the following existence and uniqueness theorem can
be proved:

Teorema 3 Given a stochastic basis in usual ipothesis where a continu-
ous d-dimensional brownian motion with increments independent of the
past is defined, if η is a m-dimensional random variable Fu-measurable
square-integrable, E[|η|2] < +∞, if the ipothesis (A) holds there exists a
process ξ ∈M2(u, T ) such that:
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ξt = η +

∫ t

u

b(ξs, s)ds+

∫ t

u

σ(ξs, s)dBs (45)

Moreover, if ξ′ soddisfys equation (45), then:

P (ξt = ξ′t, ∀t ∈ [u, T ]) = 1 (46)

A very important special case is the stochastic differential equation
with deterministic initial condition. We denote ξx,st the solution of:

{

dξt = b(ξt, t)dt+ σ(ξt, t)dBt

ξs = x, x ∈ R
m (47)

We state without proof this result, concerning continuous dependence on
initial data:

Teorema 4 Under ipothesis (A) there exists a collection of m-
dimensional random variables {Zx,s(t)}x,s,t, with x ∈ R

m, 0 ≤ s ≤ t ≤ T

such that.

1. the map (x, s, t)→ Zx,s(t) is continuous for each ω;

2. Zx,s(t) = ξx,st almost surely for all (x, s, t).

We will always implicitely assume to modify ξx,st such that it depends
continuously on (x, s, t).

The importance of the family of processes ξx,st lies in the fact that the
process:

ξt(ω) = ξ
η(ω),u
t , t ≥ u (48)

is a solution of:

{

dXt = b(Xt, t)dt+ σ(Xt, t)dBt

Xu = η, u ≤ t
(49)

if η is Fu-measurable and square integrable. Moreover, the following
important (almost sure) equality holds:

ξt(ω) = ξ
ξs(ω),s
t , u ≤ s ≤ t (50)

II. STOCHASTIC DIFFERENTIAL EQUATIONS AND

MARKOV PROCESSES

Let ξ
x,s
t be the solution of:

{

dξt = b(ξt, t)dt+ σ(ξt, t)dBt

ξs = x, x ∈ R
m (51)

continuous in (x, s, t), s ≤ t.
If A is a Borel subset of Rd we can define the real valued function:
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p(A, t | x, s )
def
= P (ξx,st ∈ A) = E [1A(ξ

x,s
t )] (52)

The dependence on x is measurable as a consequence of the continuity
in in (x, s, t), and the dependence on A provides a probability measure,
the law of the random variable ξx,st .

We are going to show now that p satisfys the Markov property for the
process ξ

x,s
t :

P (ξx,st ∈ A|Fu) = p(A, t | ξx,su , u) (53)

To this aim, we need the the following equality:

ξ
x,s
t (ω) = ξ

ξ
x,s
u (ω),u

t , a.s., ∀s ≤ u ≤ t (54)

which is simply the relation (50). Let’s define:

ψ(x, ω) = 1A(ξ
x,u
t (ω)) (55)

We observe that:

P (ξ
x,s
t ∈ A|Fu) = E [1A (ξ

x,s
t ) |Fu] = (56)

= E
[

1A

(

ξξ
x,s
u ,u

t

)

|Fu

]

= E [ψ(ξx,su , ·)|Fu]

Now, the random variable:

ω → ξx,su (ω) (57)

is Fu-measurable, while the random variable:

ω → ψ(x, ω) = 1A(ξ
x,u
t (ω)) (58)

is independent on Fu, since, intuitively, whatever happens before u
doesn’t matter having fixed the process in x at the time u. We can thus
use a theorem about conditional expectations:

E [ψ(ξx,su , ·)|Fu] = E [ψ(ξx,su , ·)] (59)

We have:

E [ψ(ξx,su , ·)] = E
[

1A

(

ξξ
x,s
u ,u

t

)]

= p(A, t | ξx,su , u ) (60)

Putting all together, we have proved the Markov property:

P (ξx,st ∈ A|Fu) = p(A, t | ξx,su , u) (61)

We need to show now that Chapman-Kolmogorov property holds,
which is quite simple:

p(A, t | x, s ) = E [1A(ξ
x,s
t )] = E [E [1A(ξ

x,s
t )|Fu]] = (62)

= E [p(A, t | ξx,su , u )] =
∫

Rd p(A, t | y, u ) p( dy, u | x, s )
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We have thus learned that {ξx,st } is a Markov process with initial
instant s, initial law δx and transition function p. We already know that
such process is continuous; moreover, since ξ

x,s
t is continuous in (x, s, t),

the map:

(x, t) 

∫

Rd

dy f(y) p( dy, t+ h | x, t ) = E
[

ξx,tt+h

]

(63)

is continuous for any function f continuous and bounded. In the language
of Markov processes theory, this is called Feller property, which, to-
gether with the continuity of the process, makes {ξ

x,s
t } a strong Markov

process.

III. KOLMOGOROV EQUATIONS

We are going to show now a very important link between stochastic
differential equations and partial differential equations.

To this aim, we consider a measurable real-valued function f limited,
C2(Rd) with bounded derivatives, and define the map:

(Ts,tf) (x)
def
= E [f (ξx,st )] =

∫

Rd

dy f(y) p( dy, t | x, s ) (64)

where, as in the previous paragraph:

{

dξt = b(ξt, t)dt+ σ(ξt, t)dBt

ξs = x, x ∈ R
d (65)

We assume moreover that ipothesis (A) hold.
We apply now Ito formula to the process f (ξx,st ), obtaining:

df (ξ
x,s
t ) =

d
∑

i=1

∂f (ξx,st )

∂xi
(dξ

x,s
t )i +

1

2

d
∑

i,j=1

∂2f (ξx,st )

∂xi∂xj
ai,j(ξ

x,s
t , t)dt (66)

where:

a = σ σT (67)

We define now:

(Ltf)(x) =
1

2

d
∑

i,j=1

ai,j(x, t)
∂2f

∂xi∂xj
(x) +

∑

i

bi(x, t)
∂f

∂xi
(x) (68)

so that:

df (ξ
x,s
t ) = (Ltf)(ξ

x,s
t )dt+

d
∑

i=1

m
∑

j=1

∂f (ξx,st )

∂xi
σi,j (ξ

x,s
t , t) dBj(t) (69)

By construction, the derivatives of f are limited and σ has a sublinear
growth; moreover we know that ξx,st belongs to M2(s, T ), which implies
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that the coefficient of the differential of the brownian motion belongs to
M2(s, T ). We can thus be sure that the Ito integral has zero mean. We
can thus write:

E [f (ξx,st )] = f(x) +

∫ t

s

duE [(Luf)(ξ
x,s
u )] (70)

that is:

(Ts,tf) (x) = f(x) +

∫ t

s

du (Ts,u ◦ Luf) (x) (71)

The key point is the association between a stochastic differential equa-
tion and a differential operator:

dξt = bdt+ σdBt ←→ Lt =
1

2

d
∑

i,j=1

ai,j
∂2

∂xi∂xj
+
∑

i

bi
∂

∂xi
(72)

with a = σ σT , positive semidefinite. All the coefficients b, σ and a, in
general, depend on (x, t).

We observe that, in (71), if Ts,t commutes with Lu, we are lead to a
differential equation for the function:

(x, t, s) (Ts,tf) (x) (73)

The following important result can be shown:

Teorema 5 (Backward Kolmogorov equation) If the ipothesis (A)
hold and ∀R > 0, there exists λR > 0 such that:

〈a(x, t) z, z〉 ≥ λR|z|
2 (74)

for all (x, t), |x| < R, 0 ≤ t ≤ T and z ∈ R
m, then, defining

ut(x, s)
def
= (Ts,tf) (x) for f limited and continuous, ut(x, s) is the unique

solution with polynomial growth on [0, t) of the Backward Kolmogorov
equation:

{

∂u
∂s

= −Lsu
lims→t− u(x, t) = f(x)

(75)

Another very interesting point is to write down the equation of mo-
tion for the transition probability. Let’s assume that there exist a time
dependent transition probability density:

p(A, t | x, s ) =

∫

A

dy p( y, t | x, s ), t > s (76)

We start from the expression:

E [f (ξx,st )] = f(x) +

∫ t

s

duE [(Luf)(ξ
x,s
u )] (77)

wheref is measurable and limited, C2(Rd) with limited derivatives. Ex-
plicitely we have:
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∫

Rd dy f(y)p( y, t | x, s ) = f(x) + (78)
∫ t

s
du
∫

Rd dy p( y, u | x, s )
(

1
2

∑d
i,j=1 ai,j(y, u)∂

2
i,jf(y) +

∑

i bi(y, u)∂if(y)
)

If the transition probability density is differentiable with respect to t for
t > s and if we can integrate by parts, we get:

∫

Rd

dy f(y)

(

∂

∂t
−

1

2

d
∑

i,j=1

∂2i,jai,j(y, t) +
∑

i

∂ibi(y, t)

)

p( y, t | x, s ) = 0

(79)
Since such equation holds for any f (regular enough), we are driven to the
famous Fokker-Planck equation or forward Kolmogorov equation,
providing the equation of motion of the transition probability density:

∂
∂t
p( y, t | x, s ) = (80)

= 1
2

∑d
i,j=1

∂2

∂yi∂yj

(

ai,j(y, t)p( y, t | x, s )
)

−
∑

i
∂
∂yi

(

bi(y, t)p( y, t | x, s )
)
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