
Stochastic search and optimization �
Mathematical techniques of search and optimization are aimed at �
providing a formal means for making the best decisions in many real
situations. Given the difficulties in many real-world problems and the
inherent uncertainty in information that may be available for carrying out
the task, stochastic search and optimization methods have been �
playing a rapidly growing role.�
�
DEFINITION: Stochastic optimization methods are optimization algorithms
which incorporate probabilistic elements, either in the problem data (the
objective function, the constraints, etc.), or in the algorithm itself (through
random parameter values, random choices, etc.), or in both. �
The concept contrasts with the deterministic optimization methods, where
the values of the objective function are assumed to be exact, and the
computation is completely determined by the values sampled so far.�
�
The two main problems of interest are: �

–  Find the value(s) of a vector x∈S that minimize a scalar-valued loss function
L(x)�

–  Find the value(s) of a vector x∈S that solve the equation g(x)=0 for some
vector-valued function g(x)�

Formalization of the objectives�
The vector x represents a collection of “choices” that one is aiming to �
pick in the best way.�
The loss function L(x) is a scalar measure that summarizes�
the performance of the system for a given value of these choices. Other
common names for the loss function are performance measure, objective
function, fitness function, or criterion. �
The domain S reflects allowable values or the constraints on the elements
of x. It can be continuous, discrete or both (continuous for some coordinate
of x and discrete for the others)�
While the first problem above refers to minimizing a loss function, a
maximization problem (e.g., maximizing profit) obviously can be trivially�
converted to a minimization problem by changing the sign of the criterion.�
The root-finding function g(x) (which is generally a vector) often arises via
calculating the gradient (derivative) of the loss function (i.e., g(x) = ∇L(x)).�
Conversely, the second problem can be converted directly into an
optimization problem by noting that a x such that g(x)=0 is equivalent to a
x such that ||g(x)|| is minimized for any vector norm ||•||�

Finding a global minimum?�
One of the major distinctions in optimization is between global and local�
optimization. All other factors being equal, one would always want a
globally optimal solution to the optimization problem.�
In practice, however, a global solution may not be available and one must
be satisfied with obtaining a local solution. �
For example, L(x) may be shaped such that there is�
a clearly defined minimum point over a broad region of the domain S, while�
there is a very narrow spike at a distant point…�
This example illustrates that, in general, one�
cannot be guaranteed of ever obtaining a global�
solution. Without prior knowledge about the�
Possible existence of such a point, no typical�
algorithm would be able to find this solution �
because there is nothing near x* to indicate the�
presence of a minimum. Because of the inherent limitations of the vast
majority of optimization algorithms, it is usually only possible to ensure
that an algorithm will approach a local minimum with a finite amount of
resources being put into the optimization process.�

Hard problem

x* � S�

L(x)�

Stochastic data or procedures�
However, since the local minimum may still yield a significantly�
improved solution (relative to no formal optimization process at all), the
local minimum may be a fully acceptable solution for the resources
available (human time, money, computer time, etc.) to be spent on the
optimization. However, we will also consider some algorithms (random
search, simulated annealing, genetic algorithms, etc.) that are sometimes�
able to find global solutions among multiple local solutions.�
As quoted in the first slide, stochastic search and optimization applies
where there is random noise in the measurement of L(x) or g(x) and/or
there is a random choice made in the search direction as the algorithm
iterates toward a solution.�
Partly-random input data arise in situation like�
simulation-based optimization where " " " "Monte Carlo
simulations are run as estimates of an �
actual system, and problems where there is �
experimental error in the measurements of�
the criterion. In the presence of noise the search�
for a global minimum could have no meaning at all! �

Stochastic data or procedures�
In such cases, knowledge that the function values are contaminated by
random "noise" leads naturally to algorithms that use statistical inference
tools to estimate the "true" values of the function and/or make
statistically optimal decisions about the next steps. �
On the other hand, even when the data is exact, it is sometimes beneficial
to deliberately introduce randomness into the search process as a means of
speeding convergence and making the algorithm less sensitive to modelling
errors.�
Further, the injected randomness may provide �
the necessary impetus to move away from �
a local solution when searching for a�
global optimum. Think about a �
multidimensional space S full of local�
minima; any kind of deterministic optimization �
procedure would be unable to explore all this �
complex “landscape”.�
Indeed, this randomization principle is known to be a simple and effective
way to obtain algorithms with almost certain good performance uniformly
across all data sets, for all sorts of problems.�

The traveling salesman problem�
Before presenting a first example, let us provide some general�
background on the traveling salesman problem: A traveling salesman must
visit every city in some territory once and only once. The problem is to find
the minimum path.�
Because there is a finite number of possible paths, this is a discrete�
optimization problem, although one with a potentially very large number of
elements in S. A tour with n ≥ 3 cities has (n-1)!/2 possible unique tours, �
corresponding to the number of elements in S (Unique here refers to �
fundamentally different ordering. For example, if n = 3, the tour 1-2-3-1 is�
considered equivalent to 1-3-2-1 by the symmetry of the cost between
cities, where the indicated numbers 1, 2, or 3 represent the labels for the
three cities).�
For example, finding an optimal tour of the largest cities in all 50 states of
the United States entails 3x1062 possible routes, far more than the
estimated number of atoms in the Earth (≈1050).�
In the language of combinatorial optimization, the problem is NP-complete
("NP" variously stands for non-polynomial)�

NP-complete problems�
NP-complete problems are computational problems that are all equally
difficult because we do not know how to build algorithms that can solve
them in polynomial-time; they are said to be intractable problems. The only
algorithms we know for them need an exponential-time.�
This means that this problem belongs to a class of problems, whose
computation time for an exact solution increases with N as �
exp(const.×N), becoming rapidly prohibitive in cost as N increases.�
The traveling salesman problem also belongs to a class of minimization
problems for which the objective function L has many local minima.�
In practical cases, it is often enough to be able to choose from these a
minimum which, even if not absolute, cannot be significantly improved upon.
If one absolutely wants to get the global optimum for a large NP-complete
problem, the only way is to let the computer run for several hundred years
…�
The stochastic way is therefore a pragmatic one. For example, for practical
purposes, simulated annealing has effectively “solved” the traveling
salesman problem. This method has also been used successfully for designing
complex integrated circuits, another combinatorial optimization problem.�

A first algorithm: Random search�
Random search is what it says it is. In essence, it simply consists in picking
up random potential solutions and evaluating them. The best solution over a
number of samples is the result of random search.�
Many people do not realize that a stochastic algorithm is nothing else than
a random search, with hints by a chosen heuristics to guide the next
potential solution to evaluate.�
People who realize this feel uneasy about stochastic algorithms, because
there is not guarantee that such an algorithm (based on random choices)
will always find the global optimum.�
The only answer to this problem is a probabilistic one: For example, if, for
a particular problem, one already knows the best solution, and if, over a
significative number of runs, the proposed stochastic algorithm finds a
solution that in average is 99% as good as the known optimum for the
tested instances of the problem, then, one can hope that on a new instance
of the problem for which the solution is not known, the solution found by
the stochastic algorithm will be 99% as good as the unknown optimum over
a significative number of runs.�
This claim is not very strong, but, as we have seen, there are not many
other options available…�

No free lunch theorem�
In general there is a competition between algorithm efficiency and
algorithm robustness (reliability and stability in a broad range of problems).
In essence, algorithms that are designed to be very efficient on one type of
problem tend to be not reliably transferred to problems of a different
type. Hence, there can never be a universally best search algorithm. One�
must consider the characteristics of the problem together with the goals of
the search and the resources available (computing power, human analysis
time, etc.) in choosing an approach.�
A very important theorem is that of the No Free Lunch (Wolpert &
Macready, 1997). This theorem states that no search algorithm is better
than a random search on the space of all possible problems. In other words,
if a particular algorithm does better than a random search on a particular
type of problem, it will not perform as well on another type of problem, so
that all in all, its global performance on the space of all possible problems
is equivalent to a random search.�
While the NFL theorem is established for discrete optimization with a�
finite (but arbitrarily large) number of options, their applicability includes
most practical continuous problems because virtually all optimization is
carried out on 32- or 64-bit digital computers.�

…we have to pay! �
The theorem apply to the cases of both noise-free and noisy loss
measurements. Because the NFL theorems seem to paint a discouraging
picture that "all algorithms work the same," one might wonder about the
value of studying various stochastic algorithms. A lecture devoted to blind
search alone would be a short lecture indeed! �
If a problem has some known structure (and all conceivable practical
problems do) and the algorithm uses that structure, it is certainly possible
that one algorithm will work better than another on the given problem.�
The overall implication is very interesting, as it means that an off the shelf
stochastic optimizer cannot be expected to give good results on any kind of
problem (no free lunch); a stochastic optimizer is not a black box: to
perform well, such algorithms must be expertly adapted for each specific
problem.�
For this reason I like very much Genetic Algorithms, because they consist
of abstract procedures, mimicking natural evolution, which can be easily
modelled to a particular optimization problem.�

Simulated annealing �
The computational challenge in stochastic optimization methods depends
strongly on the number of degrees of freedom and the complexity of the
“landscape” L(x) on S.�
The latter depends on the total number of low-lying “metastable
states” (local minima), the ability to efficiently explore the configuration
space S and the average height of transition states that separate low-lying
metastable states.�
The fundamental challenge in stochastic optimization is to balance the
number of downhill moves of the dynamical process against the number of
uphill moves. In high-dimensional problems the number of metastable states
often grows exponentially with the system size. The simplest stochastic
optimization method, repeated local optimization (which moved only
downhill) starting from random initial conditions, will therefore also require
an exponentially large number of steps.�
To significantly reduce the computational effort, stochastic optimization
methods must therefore also move uphill. In simulated annealing this
challenge is met by simulating the “finite temperature dynamics of the
system”.�

Starting from a configuration x with “energy” L(x) one generates a new
configuration x’ with energy L(x’) which replaces the original configuration
with probability: �

" " " " " " "where β is the fictitious
" " " " " "inverse temperature.�

�
At any given temperature such an (ergodic) Monte-Carlo process samples
the configurations according to their thermodynamic probability. Thus, at
high temperature moves with or against the gradient are accepted with
almost equal probability. At low temperature only downhill moves are
accepted.�
In simulated annealing one thus starts with high temperature simulation
and gradually cools the system to zero temperature. If ergodicity is not
lost during the cooling schedule, the simulation will stop in the global
minimum of the energy landscape.�
For locally smooth energy landscapes the search is greatly improved by
locally minimizing the new configuration after its generation (basin hopping
technique).�
In many rugged energy landscapes simulated annealing suffers from the so-
called freezing problem. The ruggedness depends on the ratio of the energy
difference of adjacent local minima to the height of the intervening
transition state.�

€

P =
e−β (L( $ x)−L( x)) if L( $ x) > L( x)
1 otherwise

%
&
'

Parallel tempering �
The parallel (or simulated) tempering technique was introduced to overcome
difficulties in the evaluation of thermodynamic observables for models with
very rugged potential energy surfaces (PES) and applied previously in
several protein folding studies.�
As an optimization procedure, it resembles the simulated annealing
technique.�
Low temperature simulations on rugged potential energy surfaces are
trapped for long times in similar metastable configurations because the
energy barriers to structurally potentially competing different
conformations are very high.�
In parallel tempering we consider n systems. In each of these systems�
we perform a simulation in the canonical (NVT) ensemble, but each system�
is in a different thermodynamic state. Usually, but not necessarily, these�
states differ in temperature.�
Systems with a sufficiently high temperature pass over the potential. The
low-temperature systems, on the other hand, mainly probe the local free
energy minima. The idea of parallel tempering is to include MC trial moves
that attempt to "swap" systems that belong to different thermodynamic
states, e.g., to swap a high-temperature system with a low temperature
system.�

If the temperature difference between the two systems is very large, such
a swap has a very low probability of being accepted (see below). �
The solution to this problem is to use many small steps: in parallel
tempering we use intermediate temperatures, i.e. instead of making
attempts to swap between a low and a high temperature, we swap between
ensembles with a small temperature difference.�
Let us call the temperature of system i, Ti=1/βikB, and the systems are
numbered according to an increasing temperature scale, T1< T2< … < Tn,�.
We define an extended ensemble that is the combination of all n
subsystems.�
The partition function of this extended ensemble is the product of all
individual NVTi ensembles: �

To sample this extended ensemble it is in principle sufficient to perform
NVTi simulations of all individual ensembles. But we can also introduce a
Monte Carlo move, which consists of a swap between two ensembles. The
acceptance rule of a swap between ensembles i and j follows from the
condition of detailed balance.�

€

ZPT = ZNVTi
i =1

n
∏ =

1
Λi
3NN! d  x i e−βi L(

 x i)∫
i =1

n
∏

It turns out to be (it should be accepted both for i and j): �

" " " " " "where βi and L(xi) are the inverse
" " " " "temperatures and energy of the ith

replica�
It is important to note that, as we know the total “energy” of a
configuration anyway, these swap moves are very inexpensive since they do
not involve additional calculations.�
It should be stressed that the swap moves do not disturb the Boltzmann �
distribution corresponding to a particular ensemble. Therefore one can
determine ensemble averages from every individual ensemble just as we do �
for an ordinary Monte Carlo simulations. This is an important improvement
over simulating annealing, since in simulating annealing ensemble averages
are not defined. Parallel tempering is a true equilibrium Monte Carlo �
scheme: the choice of the exchange probability ensures that all simulations
remain in thermodynamic equilibrium at their respective temperatures.�
Without loss of generality one may confine the exchange mechanism to
simulations which are adjacent in temperature.�

€

P =min 1,e− (β j −βi)[L(
 x i)−L(

 x j)]{ }$
%
& '

(
)

L(x) �

… and�
from PT�Probability of�

finding x from�
ordinary MC�
simulation …�
�

The exchange mechanism improves the configurational averaging of the low-
temperature simulations, because the exchange with high-temperature
simulations provides a mechanism to overcome the high energy barriers
between low-lying metastable configurations.�

�
The temperature scale for the highest and lowest temperatures is
determined by the requirement to efficiently explore the configurational
space and to accurately resolve local minima, respectively. �
Applied as an optimization technique, however the simulation associated
with the lowest temperature will typically yield the estimate for the global
optimum, while all others are required to generate different configurations.�
The computational effort of the method rises linearly with the number of
temperatures.�

Introduction to Genetic Algorithms�
Genetic algorithms (GAs) were invented by John Holland in the 1960s and
were developed by Holland and his students and colleagues at the
University of Michigan in the 1960s and the 1970s.�
Holland's original goal was not to design algorithms to solve specific
problems, but rather to formally study the phenomenon of adaptation as it
occurs in nature and to develop ways in which the mechanisms of natural
adaptation might be imported into computer systems.�
Holland's 1975 book Adaptation in Natural and Artificial Systems presented
the genetic algorithm as an abstraction of biological evolution and gave a
theoretical framework for adaptation under the GA.�
Holland’s GA is a method for moving from one population of
"chromosomes" (e.g., strings of ones and zeros, or "bits”) to a new
population by using a kind of "natural selection" together with the
genetics-inspired operators of crossover, mutation, and maybe others. Each
chromosome consists of "genes" (e.g., bits), each gene being an �
instance of a particular "allele" (e.g., 0 or 1). The selection operator
chooses those chromosomes in the population that will be allowed to
reproduce, and on average the fitter chromosomes produce more
descendants than the less fit ones.�

The appeal of evolution �
Crossover exchanges subparts of two chromosomes, roughly mimicking
biological recombination between two single-chromosome organisms;
mutation randomly changes the allele values of some locations in the
chromosome.�
Holland's introduction of a population-based algorithm with selection
crossover and mutation was a major innovation. Moreover, Holland was the
first to attempt to put computational evolution on a firm theoretical footing
(see Holland 1975). This theoretical foundation, based on the notion of�
“schemas” was the basis of almost all subsequent theoretical work on
genetic algorithms. Why use evolution as an inspiration for solving
computational problems? As we have seen, many computational problems
require searching through a huge number of possibilities for solutions. Such
search problems can often benefit from an effective use of parallelism, in
which many different possibilities are explored simultaneously in an �
efficient way.�
What is needed is both computational parallelism and an intelligent �
strategy for choosing the next set of sequences to evaluate.�
Biological evolution is an appealing source of inspiration for addressing these
problems. Evolution is, in effect, a method of searching among an enormous
number of possibilities for “solutions”. �

In biology the enormous set of possibilities is the set of possible genetic
sequences, and the desired “solutions” are highly fit organisms that are well
able to survive and reproduce in their environments.�
Evolution can also be seen as a method for designing innovative solutions to
complex problems. Seen in this light, the mechanisms of evolution can inspire
computational search methods.�
Of course the fitness of a biological organism depends on many factors, for
example, how well it can adapt to the environment and how well it can
compete with or cooperate with the other organisms around it. The fitness�
criteria continually change as creatures evolve, so evolution is searching a
constantly changing set of possibilities.�
Furthermore, evolution is a massively parallel search method: rather than
work on one species at a time, evolution tests and changes millions of
species in parallel. Finally, viewed from a high level the "rules" of evolution
are remarkably simple: species evolve by means of random variation (via�
mutation, recombination, and other operators), followed by natural selection
in which the fittest tend to survive and reproduce, thus propagating their
genetic material to future generations. Yet these simple rules are�
thought to be responsible, in large part, for the extraordinary variety and
complexity we see in the biosphere.�

Elements of Genetic Algorithms�
Genetic algorithms (GA) are search algorithms for optimal solutions based
on the mechanics of natural selection and natural genetics.�
It turns out that there is no rigorous definition of "genetic algorithm"
accepted by all in the evolutionary-computation community.�
However, it can be said that most methods called "GAs" have at least the
following elements in common: populations of chromosomes, selection
according to fitness, crossover to produce new offspring, and random�
mutation of new offspring.�
Thus they combine survival of the fittest among string structures with a
structured yet randomized information exchange to form a search
algorithm.�
In every generation a set of artificial creatures (strings) is created using
“information” of the fittest of the old and an occasional new part can be
tried.�
While randomized, genetic algorithms are no simple random walk. They
efficiently exploit historical information to speculate on new search points
with expected improved performance. Genetic Algorithms are good at taking
large, potentially huge search spaces and navigating them, looking for
optimal combinations of things, solutions you might not otherwise find in a
lifetime.�

Genetic algorithms are different from more normal optimization and search
procedures in four ways: �

–  Gas in general work with a coding of the parameter set, not the parameters
themselves�

–  Gas search from a population of “points”, not a single point �
–  Gas use direct information, not derivatives or other auxiliary knowledge�
–  Gas use probabilistic transition rules, not deterministic rules�

Genetic algorithms require the natural parameter set of the optimization
problem to be coded as a finite-length string over some specific (in general
finite) alphabet �
The population is the ensemble of the chromosomes existing at a given time.
Chromosomes (a possible solution) could be: �

–  Bit string [0101…1100] "- Real numbers [43.2 -33.1 … 0.0 89.2] �
–  Program elements (genetic/evolutionary programming) " - …any

data structure�
Genes: elements of a chromosome�
" "Bit string: the chromosome [1001101] has 7 genes�

Alleles: possible values of a gene�
" "Bit string: 2 values (0,1)�

Population, Genes and Alleles�

Operators and definitions�
The simplest form of genetic algorithm involves three types of operators:
selection, crossover (single point), and mutation.�
Selection: this operator selects chromosomes in the �
population for reproduction. The fitter the chromosome, �
the more times it is likely to be selected to reproduce�
(Fitness: the measure of goodness of a solution in an �
optimization problem).�
Crossover: when two individuals have been selected, �
both parents pass their chromosomes onto their�
offspring. The two chromosomes come together�
and swap genetic material. In binary Gas�
crossover is performed by swapping a part of�
binary strings between two solutions at a randomly chosen cross-site with
some probability.�
Mutation: conversion of genes from one to another. In Binary GAs mutation
is performed by converting some random bit of a binary string into its
complementary bit (i.e. a 1 to a 0 or vice versa) with some probability.
Mutation will help prevent the population from stagnating. It adds
diversity. �

Fake roulette�
wheel selection �

[1001] �

[1011] �
[0011] �

[0010] �

[1111] �

A simple genetic algorithm�
Given a clearly defined problem to be solved and a bit string representation
for candidate solutions, a simple GA works as follows: �
 Start with a randomly generated population of n l-bit chromosomes
(candidate solutions to a problem).�
Calculate the fitness f(x) of each chromosome x in the population.�
Repeat the following steps until n offspring have been created: "
A. Select a pair of parent chromosomes from the current population, the
probability of selection being an increasing function of fitness. Selection is
done "with replacement," meaning that the same chromosome can be
selected more than once to become a parent. " �
B. With probability Pc crossover the pair at a randomly chosen point
(chosen with uniform probability) to form two offspring. If no �
crossover takes place, form two offspring that are exact copies of their
respective parents. " " " " " " �
C. Mutate the two offspring at each locus with probability Pm , and place
the resulting chromosomes in the new population.�
1.  Replace the current population with the new population.�
2.  Repeat: Go to step 2.�

Each iteration of this process is called
a generation. The entire set of
generations is called a run. At the end
of a run there are often one or more�
highly fit chromosomes in the
population.�
• Since randomness plays a large role in
each run, two runs with different
random-number seeds will generally
produce different detailed behaviours.�
GA researchers often report statistics
(such as the best fitness found in a
run and the generation at which the
individual with that best fitness was
discovered) averaged over many
different runs of the GA on the same
problem.�

The simple procedure just described is the basis for most applications of
GAs. There are a number of details to fill in, such as the size of the
population and the probabilities of crossover and mutation, and the
success of the algorithm often depends greatly on these details. �

Flow chart

For example one can have: �
Solutions Generational GA: entire populations replaced with each iteration �
Steady-state GA: a few members replaced each generation �
Elitism: Some elite (good) solutions are carried onto the next generation
without being destroyed.�
GAs are especially useful when �
The search space is large, complex or the knowledge about it is scarce or it
is difficult to encode to narrow the search space.�
Traditional search methods fail.�
Moreover GAs: �
support multi-objective optimization �
give always an answer; and this answer gets better with time�
are inherently parallel�
�
Question:“If GAs are so smart, why ain’t they rich?”�
Answer:"“Genetic algorithms are rich - rich in application across a large and

growing number of disciplines.”�
"- David E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning �

The “building block”: schema�
The traditional theory of GAs (first formulated in Holland 1975) assumes
that, at a very general level of description, GAs work by discovering,
emphasizing, and recombining good "building blocks" of solutions in a�
highly parallel fashion. The idea here is that good solutions tend to be
made up of good building blocks—combinations of bit values that confer
higher fitness on the strings in which they are present.�
Holland (‘75) introduced the notion of schema to formalize the informal
notion of "building blocks.”�
DEFINITION: a schema is an equivalence class of chromosomes �
A schema is a set of bit strings that can be described by a template made
up of ones, zeros, and asterisks, the asterisks (*) representing wild cards
(or "don't cares").�
For example, the schema H=[1****1] represents the set of all 6-bit strings
that begin and end with 1. (here I use Goldberg's notation in which H
stands for "hyperplane." H is used to denote schemas because schemas
define hyperplanes-"planes" of various dimensions in the l-dimensional
space of length-l bit strings.)�

Instances, order and defining length�
The strings that fit this template (e.g., [100111] and [110011]) are said to be
instances of H (e.g. [1****1])�
DEFINITION: a schemas is of order n iff n is the number of genes
different from an asterisks (*); formally n=o(H)�
DEFINITION: the defining length of a schemas H is the maximum distance
in H between two defined genes; formally d(H)�
Thus, in the example above, the schema H=[1****1] is said to have two �
defined bits (non-asterisks) or, equivalently, to be of order 2. Its defining
length (the distance between its outermost defined bits) is 5.�
A central belief of traditional GA theory is that schemas are (implicitly)
the building blocks that the GA processes effectively under the operators
of selection, �
mutation, and single-point crossover.�
How does the GA process schemas? In the case of a binary alphabet, any
given bit string of length l is an instance of 2l different schemas. For�
example, the string [11] is an instance of [**] (all four possible bit strings
of length 2), [*1] , [1*] , and [11] (the schema that contains only one string,
11).�

How do GA work? �
Thus, any given population of n strings contains instances of�
between 2l (maximal homogeneity) and n×2l (maximal diversity) different
schemas. If all the strings are identical, then there are instances of
exactly 2l different schemas; otherwise, the number is less than or equal
to n×2l.�
This means that, at a given generation, while the GA is explicitly evaluating
the fitnesses of the n strings in the population, it is actually implicitly�
estimating the average fitness of a much larger number of schemas, where
the average fitness of a schema is defined to be the average fitness of all
possible instances of that schema.�
For example, in a randomly generated population of n strings, on average
half the strings will be instances of [1***…*] and half will be�
instances of [0***…*]. The evaluations of the approximately n/2 strings
that are instances of [1***…*] give an �
estimate of the average fitness of that schema (this is an estimate
because the instances evaluated in typical-size population are only a small
sample of all possible instances).�

The Schema Theorem�
Just as schemas are not explicitly represented or evaluated by the GA, the
estimates of schema average fitnesses are not calculated or stored�
explicitly by the GA. However, as will be seen below, the GA's behaviour, in
terms of the increase and decrease in numbers of instances of given
schemas in the population, can be described as though it actually�
were calculating and storing these averages.�
We can calculate the approximate dynamics of this increase and decrease in
schema instances as follows: �
Let H be a schema with at least one instance xi present in the population
at time t, which retains N individuals.�
Let N(H,t) (≤N) be the number of instances of H at time t, …�
and let F(H,t) be the observed average fitness of H at time t (i.e., the
average fitness of instances of H in the population at time t): �
�

�
�
�
being f the fitness function.�
We want to calculate E[N(H,t+1)] , the expected number of�
instances of H at time t+1.�

€

F (H,t) =
f (xj)j =1(x j ∈H)

N (H ,t)
∑

N(H,t)

Assume that the probability for a string xi (a chromosome) to be selected
is equal to �
�
�
�
i.e. it is equal to the ratio among the fitness of xi and the sum of the
fitnesses of the population at time t.�
Then, assuming xi is in the population at time t, and xi is an instance of H,
and (for now) ignoring the effects of crossover and mutation, we have that
the expected number of instances of H at time t+1 is�

�

Thus even though the GA does not calculate F(H,t) explicitly, the increases
or decreases of schema instances in the population depend on this�
quantity: schemas with a greater average fitness will posses a greater
number of instances as the generations evolve�

€

P(xi) =
f (xi)
f (xj)j∑

€

E N(H,t +1)[] = N × P(xj)j =1

N
∑ δ(x j ∈H) = N ×

f (xj)j =1(x j ∈H)

N (H ,t)
∑

f (xj)j =1

N
∑

=

N ×N(H,t)
1

N(H,t) f (xj)j =1(x j ∈H)

N (H ,t)
∑

f (xj)j =1

N
∑

= N(H,t) F (H,t)
1
N f (xj)j =1

N
∑

(*)�

By assuming that F(H,t) = [∑jf(xj)/N](1+c) > ∑jf(xj)/N it follows that �

Then starting from t=0 and assuming c a constant we obtain: �

" " " " " " " " "�

which is a geometric progression, the discrete analogous of the exponential�
form.�
Thus, the selection operator assigns an increasing (decreasing) number of
instances to schemas with high (low) idoneity following an exponential law.�
Crossover and mutation can both destroy and create instances of H. For
now let us include only the destructive effects of crossover and mutation,
those that decrease the number of instances of H.�
Including these effects, we modify the right side of the previous equation
to give a lower bound on E[m(H,t+1)].�

€

E N(H,t +1)[] = N(H,t)
1
N f (xj)j =1

N
∑#

$ %
&

' (
(1+ c)

1
N f (xj)j =1

N
∑

= N(H,t)(1+ c)

E N(H, t +1)[] = N(H, 0)(1+ c)t

Let Pc be the probability that single-point crossover will be applied to a
string, and suppose that an instance of schema H is picked to be a parent.
Schema H is said to "survive" under single-point crossover if one of the
offspring is also an instance of schema H. We can give a lower bound on
the probability Sc(H) that H will survive to a single-point crossover: �
�

"�
where d(H) is the defining length of H and l is the length of bit strings �
in the search space. That is, crossovers occurring within the defining �
length of H can destroy H (i.e., can produce offspring that are not �
instances of H), so we multiply the fraction of the string that H occupies �
by the crossover probability to obtain an upper bound on the probability �
that it will be destroyed. (The value is an upper bound because some �
Crossovers inside a schema's defined positions will not destroy it, e.g., if �
two identical strings cross with each other.)�
Subtracting this value from 1 gives a lower bound on the probability of
survival Sc(H) . In short, the probability of survival under crossover is
higher for shorter schemas.�

€

Sc (H) ≥1−Pc ×
d (H)
l −1

%

&
'

(

)
*

The disruptive effects of mutation can be quantified as follows: Let Pm be
the probability of any bit being mutated. Then Sm(H), the probability that
schema H will survive under mutation of an instance of H, is equal�
to (1-Pm)o(H), where o(H) is the order of H (i.e., the number of defined bits
in H).�
That is, for each bit, the probability that the bit will not be mutated is 1-
Pm , so the probability that no defined bits of schema H will�
be mutated is this quantity multiplied by itself o(H) times. In short, the
probability of survival under mutation is higher for lower-order schemas.�
These disruptive effects can be used to amend equation (*) : �

This is known as the Schema Theorem (Holland ‘75). It describes the
growth of a schema from one generation to the next. The Schema Theorem
is often interpreted as implying that short, low-order schemas whose
average fitness remains above the mean will receive exponentially
increasing numbers of samples (i.e., instances evaluated) over time.�

€

E N(H,t +1)[] ≥ N(H,t) F (H,t)
1
N f (xj)j =1

N
∑

1−Pc
d (H)
l −1

%

&
'

(

)
* 1−Pm()o (H)

The Schema Theorem is a lower bound, since it deals only with the
destructive effects of crossover and mutation.�
However, crossover is believed to be a major source of the GA's power, �
with the ability to recombine instances of good schemas to form instances
of equally good or better higher-order schemas; this is known as the
Building Block Hypothesis (Goldberg ‘89).�
In evaluating a population of n strings, the GA is implicitly estimating the
average fitnesses of all schemas that are present in the population, and
increasing or decreasing their representation according to the Schema�
Theorem.�
This simultaneous implicit evaluation of large numbers of schemas in a
population of n strings is known as implicit paralelism (Holland ‘75).�
The effect of selection is to gradually bias the sampling �
procedure toward instances of schemas whose fitness is estimated to be
above average. The Schema Theorem and the Building Block Hypothesis
deal primarily with the roles of selection and crossover in GAs. What �
is the role of mutation? Holland (‘75) proposed that mutation is what
prevents the loss of diversity at a given bit position.�
In the end note that GAs can be seen as Markov processes! �

