
E. Vitali Lecture 4. Markov chains

I. MARKOV CHAINS

In the present chapter we will introduce the mathematical description
of time-dependent random phenomena. We will begin treating the simple
case in which the time evolution can be represented as a sequence of
steps in discrete time, and the random variables describing the quantities
evolving randomly in discrete time take values in a discrete space.

In the following, we will consider a probability space (Ω,F , P ) and a
set E at most countable, which we will call state space.

All the random variables X which will be dealt with are measurable
functions X : Ω → E with discrete density:

E ∋ k  vk
def
= P (X = k), vk ≥ 0,

∑

k∈E

vk = 1 (1)

As discussed in the first chapter, a discrete density uniquely defines a
law: having in mind (1), for the sake of simplicity, we will call v the law
of X with innocuous abuse of notation.

Random processes with discrete time and discrete state space can
be interpreted as random walks on the points of E. To the purpose of
describing such processes we must know the transition probability from
a generic point k ∈ E to another one. Therefore, a central ingredient in
out treatment is represented by the following:

Definizione 1 A transition matrix P on E is a matrix with real-

valued coefficients, such that:

1. ∀ i, j ∈ E 0 ≤ Pi→j ≤ 1

2. ∀ i ∈ E
∑N

j=1Pi→j = 1

where the symbol Pi→j, i, j ∈ E denotes the matrix elements of P.

The above requirements enable us to interpret Pi→j as the probability
of moving from i ∈ E to j ∈ E in one time step: the second one, in
particular, corresponds to asking that the probability of transitioning
from i to any other state is 1. We now give the fundamental:

Definizione 2 Given a law v on E and a transition matrix P on E,

we call homogeneous Markov chain with sample space E, with initial

law v and transition matrix P, a family: {Xn}n≥0 of random variables

Xn : Ω → E such that:

1. X0 has law v

2. whenever conditional probabilities make sense:

P (Xn+1 = j|Xn = i, Xn−1 = in−1, . . . , X0 = i0) = (2)

= P (Xn+1 = j|Xn = i) = Pi→j

We stress that P (Xn+1 = j|Xn = i) has been assumed independent of n,
whence the adjective homogeneous in definition (2).
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II. THE RANDOM WALK ON Z

To clarify ideas, we begin with a remarkable example. We let E = Z

be the set of integer numbers, and {ξm}m∈N a family of independent and
identically distributed random variables taking values in {±1} such that:

P (ξm = ±1) =
1

2
(3)

We define:
X0 = 0, Xn = ξ1 + ξ2 + · · ·+ ξn (4)

Xn has the natural interpretation of position, at time n, of a walker
starting from 0 and moving left or right with probability 1/2 at each
time step.

With this position, we have defined an homogeneous Markov chain
with initial law v, Z ∋ k  vk = δk,0 and transition matrix:

Pi→j =

{

1
2
, |i− j| = 1
0, otherwise

(5)

In fact, choosing by construction i0 = 0 and i, in−1, . . . , i1 nearest neigh-

bours):

P (Xn+1 = j|Xn = i, Xn−1 = in−1, . . . , X0 = 0) = (6)

= P (Xn + ξn+1 = j|Xn = i, Xn−1 = in−1, . . . , X0 = 0) =

= P (Xn+ξn+1=j,Xn=i,Xn−1=in−1,...,X0=0)
P (Xn=i,Xn−1=in−1,...,X0=0)

=

= P (ξn+1=j−i,ξn=i−in−1...,X0=0)
P (ξn=i−in−1...,X0=0)

=

= P (ξn+1 = j − i) = Pi→j

where the fact that ξn+1 is independent on all ξm with m ≤ n has been
used.

In the following, we will show that knowledge of the initial law and
of the transition matrix makes possible to compute all the properties of
the chain.

Nevertheless, it must be observed that, for this particular Markov
chain, it is possible to compute the law of Xn with the following reason-
ing: let us introduce, for each time step, two integer-valued non-negative
random variables Rn and Ln defined as:

Rn + Ln = n, Rn − Ln = Xn (7)

The straightforward interpretation of Rn and Ln is the number of right
and left steps made by the walker before time n. Therefore:

Rn =
1

2
(Xn + n) (8)

and thus:

P (Xn = k) = P

(

Rn =
1

2
(k + n)

)

(9)

with the caution that, if 1
2
(k + n) is not integer, P (Xn = k) = 0.
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Since Rn is the number of right steps of the n total steps, it follows
a binomial law with parameter 1/2 (number of successes in n trials). In
conclusion, if 1

2
(k + n) is a non-negative integer less than n:

P (Xn = k) =

(

n
1
2
(k + n)

)

1

2n
(10)

We take the opportunity to observe that:

P (Xn+1 = j) = P

(

⋃

h∈Z

{Xn+1 = j,Xn = h}

)

=

=
∑

h∈Z

P (Xn+1 = j,Xn = h) =
∑

h∈Z

P (Xn+1 = j|Xn = h)P (Xn = h) =

=
1

2
(P (Xn = j − 1) + P (Xn = j + 1))

(11)

Subtracting P (Xn = j) from both members yields:

P (Xn+1 = j)−P (Xn = j) =
1

2
(P (Xn = j − 1) + P (Xn = j + 1)− P (Xn = j))

(12)
Equation has the form of a partial differential equation with time and
space finite differences instead of derivatives, closely resembling the heat
equation. Another analogy with the heat equation is represented by the
following equalities, resulting from easy calculations:

E[Xn] =
n
∑

i=0

E[ξi] = 0

var(Xn) =

n
∑

i=0

var(ξi) = n

(13)

The mean distance covered by the walker scales with the square root
of the number of steps, a typical property of diffusion processes.

The connection between a stochastic process and a partial differen-
tial equation is not a coincidence, but the first appearence of a general
relationship between two apparently disconnected fields of Mathematics,
which we will explore in detail in the next chapters.

III. RECURSIVE MARKOV CHAIN

The random walk on Z exemplifies a general procedure for construct-
ing explicitly Markov chains. Let X0 be a given random variable, and
{Um}m∈N a sequence of independent and identically distributed uniform
random variables in (0, 1). Let moreover h : E×(0, 1) → E be a function,
until now arbitrary. Define:

Xn+1 = h (Xn, Un+1) (14)
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Repeting the calculation of the previous chapter it is easily concluded
that {Xn}n is a Markov chain. Its transition matrix is readily obtained:

P (Xn+1 = j|Xn = i) = P (h(Xn,Un+1)=j,Xn=i)
P (Xn=i)

= (15)

= P (h(i,Un+1)=j,Xn=i)
P (Xn=i)

= P (h (i, Un+1) = j) = Pi→j

This result is very useful since, having at our disposal a random num-
ber generator, the problem of simulating a Markov chain with ini-
tial law v and transition matrix P is solved samping the initial state
with probability v and iteratively applying Xn+1 = h (Xn, Un+1) where
h : E × (0, 1) → E is a function such that P (h (i, U) = j) = Pi→j if U is
uniform in (0, 1).

Nota 3 From now on we will limit to the case in which the set E
is finite. For the sake of simplicity, we will write E = {1, . . . , N}.
Probabilities on the set E, when useful, will be identified with
row vectors v = (v1, . . . , vN) ∈ RN , vi ≥ 0,

∑N

i=1 vi = 1.

IV. TRANSITION MATRIX AND INITIAL LAW

We will now show how initial law and transition matrix give an ex-
haustive knowledge of the corresponding homogeneous Markov chain.
We begin computing the law v(1) of X1:

P (X1 = k) =

N
∑

h=1

P (X0 = h)P (X1 = k|X0 = h) =

N
∑

h=1

vh Ph→k (16)

which can be written in matrix form recalling that laws can be repre-
sented through row vectors in RN :

v(1) = vP (17)

At the subsequent instant:

P (X2 = k) =
∑N

l=1 P (X1 = l)P (X2 = k|X1 = l) = (18)

=
∑N

l=1 P (X1 = l)Pl→k =
∑N

l=1

∑N

h=1 vh Ph→l Pl→k =

=
∑N

h=1 vh
∑N

l=1Ph→l Pl→k

that is:
v(2) = v P2 (19)

Iterating this reasoning we easily conclude that the law at instant n is
obtained applying to the row vector representing the initial law the n-th
power of the transition matrix:

v(n) = v Pn (20)

It is interesting to observe that, denoting with P
(m)
i→j the matrix elements

of the m-th power Pm of the transition matrix, one obtains the m-step

transition probabilities.

P
(m)
i→j = P (Xn+m = j|Xn = i) (21)
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This can be shown iterating the following calculation:

P (Xn+m = j|Xn = i) = P (Xn+m=j,Xn=i)
P (Xn=i)

= (22)
∑

h

P (Xn+m=j,Xn+m−1=h,Xn=i)
P (Xn=i)

=

=
∑

h

P (Xn+m=j,Xn+m−1=h,Xn=i)
P (Xn+m−1=h,Xn=i)

P (Xn+m−1=h,Xn=i)
P (Xn=i)

=

=
∑

h P (Xn+m = j|Xn+m−1 = h,Xn = i)P (Xn+m−1 = h|Xn = i) =

=
∑

hPh→jP (Xn+m−1 = h|Xn = i)

We eventually compute the joint laws ot the process in terms of the initial
law v and of the transition matrix P, that is P (Xn1

= i1, . . . , Xnk
= ik),

0 ≤ n1 < · · · < nk:

P (Xn1
= i1, . . . , Xnk

= ik) = (23)

= P
(

Xn1
= i1, . . . , Xnk−1

= ik−1

)

P
(

Xnk
= ik|Xn1

= i1, . . . , Xnk−1
= ik−1

)

=

= P
(

Xn1
= i1, . . . , Xnk−1

= ik−1

)

P
(nk−nk−1)
ik−1→ik

= · · · =

= P (Xn1
= i1) P

(n2−n1)
i1→i2

. . .P
(nk−nk−1)
ik−1→ik

=

=
∑

j vjP
(n1)
j→ii

P
(n2−n1)
i1→i2

. . .P
(nk−nk−1)
ik−1→ik

Nota 4 Rewriting the 2- and 3- times joint laws in the form:

P (Xn1
= i1, Xn3

= i3) = P (Xn1
= i1) P

(n3−n1)
i1→i3

(24)

P (Xn1
= i1, Xn2

= i2, Xn3
= i3) = P (Xn1

= i1) P
(n2−n1)
i1→i2

P
(n3−n2)
i2→3 (25)

the relation:

P (Xn1
= i1, Xn3

= i3) =

N
∑

i2=1

P (Xn1
= i1, Xn2

= i2, Xn3
= i3) (26)

is equivalent to the followig Chapman-Kolmogorov equation for the

m-step transition probability:

P
(n3−n1)
i1→i3

=

N
∑

i2=1

P
(n2−n1)
i1→i2

P
(n3−n2)
i2→3 , 0 ≤ n1 < n2 < n3 (27)

The property (27), quite natural in the present context since it is known

that the m-step transition probability is obtained computing the m-th

power of the transition matrix, will turn out of great importance when

dealing with continous-time Markov processes taking values in Rd.

V. INVARIANT LAWS

Given a probability distribution π on E, which as seen before can be
represented with a row vector π = (π1, . . . , πN) ∈ RN , and a homoge-
neous Markov chain with transition matrix P = {Pi→j}i,j and initial law
v, we will say that π is invariant provided that:

π = πP , i.e πk =
∑

h∈E

πh Ph→k (28)
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We stress that if the initial law v is invariant, Xn has law v for all n: all
the Xn have the same law, giving rise to a stationary Markov process.

We now prove an important result:

Teorema 5 (Markov-Kakutani) Any transition matrix P admits has

at least an invariant law.

Dimostrazione 1 We first observe that there is a one-to-one correspon-

dence between probabilities on E ad points in the set: set:

S =

{

x ∈ R
N : 0 ≤ xi ≤ 1,

N
∑

i=1

xi = 1

}

(29)

S is a closed and limited set in RN , and therefore compact: by virtue of

Bolzano-Weierstrass theorem, any sequence in S has a convergent subse-

quence. Given a generic point x ∈ S, consider the sequence:

xn =
1

n

n−1
∑

k=0

xPk (30)

Obviously xn has non-negative components. Moreover, xn ∈ S as the

following simple calculation shows:

∑

i

xn,i =
1

n

n−1
∑

k=0

∑

h

∑

i

xhP
(k)
h→i =

1

n

n−1
∑

k=0

∑

h

xh = 1 (31)

where we have taken into account the fact that P
(k)
h→i is the probability of

moving from h to i in k steps, and therefore
∑

i P
(k)
h→i = 1.

Since {xn}n ⊂ S it has a subsequence:
{

xnk

}

nk
converging to a point

π ∈ S. We observe that:

xnk
− xnk

P =
1

nk

(

nk−1
∑

h=0

xPh −

nk−1
∑

h=0

xPh+1

)

=
1

nk

(x− xPnk) (32)

and since the quantity x− xPnk is limited by construction:

π − πP = lim
k→+∞

(

xnk
− xnk

P
)

= lim
k→+∞

1

nk

(x− xPnk) = 0 (33)

which completes the proof.

We observe that the proof of Markov-Kakutani’s theorem is construc-
tive: any sequence xn, once thinned out, converges to an invariant law,
which may be not unique. Since the point x = x0 is completely arbitrary,
it can be chosen xh = δh,i, corresponding to a probability distribution
concentrated at the point i. Were that the case:

xn,j =
1

n

n−1
∑

k=0

P
(k)
i→j (34)
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If {Xn} is the Markov chain with initial law x, concentrated at the point
i with transition matrix P, we know that:

P
(k)
i→j = P (Xk = j) (35)

Therefore:

xn,j =
1

n

n−1
∑

k=0

P
(k)
i→j =

1

n

n−1
∑

k=0

P (Xk = j) = E

[

1

n

n−1
∑

k=0

1{Xk=j}

]

(36)

and xn,j coincides with the expectation of the random variable:

1

n

n−1
∑

k=0

1{Xk=j} (37)

representing the fraction of time the process has spent in the state j
before the n-th time step. Remarkably, for large n the expectation of
such random variable approximates the j-th component of one invariant
law.

To compute the invariant law(s), the following problem must be
solved:

πj =

n
∑

i=1

πi Pi→j (38)

To this purpose, the following interesting result holds, which represent a
sufficient condition for a law π to be invariant:

Teorema 6 If a law π satisfies the detailed balance equation:

πi Pi→j = πj Pj→i, ∀i, j ∈ E (39)

then it is invariant.

Dimostrazione 2 The proof is extremely simple:

n
∑

i=1

πi Pi→j =
n
∑

i=1

πj Pj→i = πj (40)

A transition matrix may have, in general, infinite stationary laws: in
fact, as a simple calculation shows, if π and π′ are distinct stationary
laws for P, any convex linear combination of π and π′ is still a stationary
law for P .

It is therefore very interesting to investigate the uniqueness of the
invariant law. To this purpose, we introduce the following:

Definizione 7 Let P = {Pi→j}i,j be the transition matrix of a homoge-

neous Markov chain.

1. P = {Pi→j} is irreducibile if for all i, j ∈ E there exists an

integer m = m(i, j) > 0 such that P
(m)
i→j > 0.
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2. P = {Pi→j} is regular if there exists a number m > 0 such that

P
(m)
i→j > 0 for all i, j ∈ E.

A regular trasition matrix is always irreducible, but the converse is
not true in general. Nevertheless, the following result holds:

Lemma 8 If a transition matrix is irreducible, and there exists h ∈ E
such that Ph→h > 0, it is regular.

Dimostrazione 3 If for all i, j ∈ E there exists m = m(i, j) > 0 such

that P
(m)
i→j > 0, chosen s = maxi,j∈E m(i, j) we have P

(2s)
l→k > 0 for all

l, k ∈ E, as the following inequality makes clear:

P
(2s)
l→k ≥ P

(n(l,h))
l→h Ph→h . . .Ph→hP

(n(h,k))
h→k > 0 (41)

in which the term Ph→h appears 2s− n(l, h)− n(h, k) times.

Nota 9 At a first glance, it might seem very difficult to verify whether

a chain is irreducible or not, but there exist observations that can con-

siderably simplify the calculations involved: chosen two states i, j, if the
chain is irreducible there exists m > 0, in general depending on the cou-

ple (i, j) of interest, such that P
(m)
i→j > 0; since the transition matrix has

non-negative elements, this corresponds to the existence of at least one

(m− 1)-tuple of states k1, . . . , km−1 such that:

0 < Pi→k1Pk1→k2 . . .Pkm−1→j ≤ P
(m)
i→j (42)

Intuitively, it is necessary to move from i to j passing through points in

E making steps with non-zero transition probability. A crucial role is

played by elements of the transition matrix which are often denoted with

stars in standard Markov chains textbooks, for instance:

P =















0 ⋆ 0 0 0 0
0 ⋆ 0 0 ⋆ 0
0 0 0 0 ⋆ 0
0 ⋆ 0 0 ⋆ 0
⋆ ⋆ 0 0 0 0
0 0 0 0 0 ⋆















(43)

We leave to the reader the task of convincing that the above matrix is not

irreducible.

On the other hand, it is easy to realize that, given an irreducible tran-

sition matrix, every other transition matrix having at least the same con-

figuration of stars is irreducible.

We are now ready to show the following fundamental result:

Teorema 10 (Markov) If a transition matrix is regular, it admits a

unique invariant law π and, for all initial laws v:

πj = lim
n→+∞

(v Pn)j (44)
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Dimostrazione 4 By virtue of Markov-Kakutani’s theorem we already

know that an invariant law π exists. By definition:

π = πP ,
∑

k

πk = 1, 0 ≤ πk ≤ 1 (45)

Consider the 1-dimensional vector subspace of CN spanned by π:

Vπ =
{

u ∈ C
N |u = tπ, t ∈ C

}

(46)

As already discussed, π ∈ Vπ is an eigenvector of P. We now define

another subspace:

V0 =

{

y ∈ C
N |
∑

k

yk = 0

}

(47)

having dimension M − 1, and of course:

V0 ∩ Vπ = {0} (48)

since elements in Vπ are such that the sum of their components equals t.
CN can be expressed as direct sum of V0 and Vπ: every element v ∈ CN

can be uniquely written as:

v = tπ + y, y ∈ V0 (49)

The eigenvalue equation for P in CN has the form:

v P = λ v, λ ∈ C (50)

We observe that the map:

V0 ∋ y  yP (51)

leaves invariant V0, since:

∑

k

(yP)k =
∑

k

∑

i

yiPi→k =
∑

i

yi
∑

k

Pi→k =
∑

i

yi = 0 (52)

Therefore, if an element v satisfies (50):

v P = tπP + yP = λtπ + λy (53)

Since yP ∈ V0, and the representation of vP as an element of the direct

sum of V0 and Vπ is unique:

{

tπP = λtπ
yP = λy

(54)

If y = 0 we find the already known eigenvalue π relative to the eigevalue

1. We now discuss the eigenvalue equation:

yP = λy, i.e. λyi =
∑

k

yk Pk→i (55)

9
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with V0 ∋ y 6= 0. Computing the moduli and summing over i yields:

|λ|
∑

i

|yi| =
∑

i

|
∑

k

yk Pk→i| ≤
∑

i

∑

k

|yk|Pk→i =
∑

k

|yk| (56)

that is:

|λ| ≤ 1 (57)

The arguments presented so far hold for a generic trasition matrix, not

necessarily regular.

For an arbitrary regular transition matrix P there exists a number

m > 0 such that Pm, which is itself a transition matrix, has only positive

elements. When applied to Pm, (56) holds as a strict inequality.

In fact, the modulus of the sum of several complex numbers equals

the sum of their modules if and only if all the addends share the same

argument. By virtue of the hypothesis
∑

k yk = 0, the components yk
cannot have the same argument; on the other hand, the arguments of

yk P
m
k→i and yk being equal:

|λ| < 1 (58)

For an arbitrary regular transition matrix P the linear operator:

V0 ∋ y  yP ∈ V0 (59)

has eigenvalues with modulus strictly smaller than 1.
For an arbitrary initial law v, we can write:

v Pn = (π + v − π) Pn = π + (v − π) Pn (60)

And since v − π ∈ V0 the previously discussed properties of the eigen-

values of the linear operator (59) make possible to conclude that:

lim
n→+∞

vPn = π + lim
n→+∞

{(v − π) Pn} = π (61)

which completes the proof.

We have recalled the fact that if an m × m complex-valued matrix A has

eigenvalues with modulus strictly smaller than 1:

lim
n→+∞

An x = 0, ∀x ∈ C
m (62)

as a consequence of Gel’fand’s formula:

max {|λ| , λ autovalore di A} = lim
n→+∞

||An||
1

n (63)

for which we remind the reader to Functional Analysis textbooks.

VI. METROPOLIS ALGORITHM

Consider a given probability distribution π on E: we can ask ourselves
whether there exists a transition matrix P such that, for all initial laws
v:

πj = lim
n→+∞

(v Pn)j (64)
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Were that the case, we could construct a Markov chain {Xn}n with law
converging, as n tends to infinity, to π in the sense precised by (64).

As the reader might have guessed, this possibility has deep implica-
tions in the field of simulations.

To this purpose, it turns out to be necessary to assume that πj > 0
for all the states j ∈ E and that π is not the uniform distribution.

Let now Q = {Qi→j} be a symmetric and irreducible transition ma-
trix, Qi→j = Qj→i, subject to no other restrictions, and define:

Pi→j =







Qi→j , i 6= j, πj ≥ πi

Qi→j
πj

πi
, i 6= j, πj < πi

1−
∑

j 6=iPi→j , i = j
(65)

Teorema 11 (N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, 1953)
If πj > 0 for all the states j ∈ E and π is not uniform, for all the initial

laws v the Markov chain {Xn}n with initial law v and transition matrix

P is regular, and has π as unique invariant distribution. Consequently:

πj = lim
n→+∞

(v Pn)j = lim
n→+∞

P (Xn = j) (66)

Dimostrazione 5 It is sufficient to show that π satisfies the detailed bal-

ance equation with P as transition matrix. Chosen a couple of states (i, j)
such that, without loss of generality, πj ≤ πi, Pi→j = Qi→j

πj

πi
whereas

Pj→i = Qj→i and thus:

πiPi→j = πiQi→j

πj

πi

= Qi→jπj = πjPj→i (67)

where the hypothesis that Q is symmetric has been used. As a conse-

quence of (67) π is invariant.

It remains to show that the Markov chain (65) is regular; first, we

show that it is irreducible. In fact, if i 6= j and Qi→j > 0, then, by

construction Pi→j > 0; this means that P shares the star structure of Q,

which is irreducible by definition.

To prove that (65) is regular, by virtue of lemma (8) it is sufficient

to show that there exists i0 ∈ E such that Pi0→i0 > 0. Since π is not

uniform, there exists a proper subset M ⊂ E,M 6= E of E on which π
takes maximum value; due to the irreducibility of Q the chain can move

outside M , and therefore there exist i0 ∈ M and j0 ∈ M c such that

Qi0→j0 > 0 and, by construction, πi0 > πj0. Moreover, Pi→j ≤ Qi→j if

i 6= j. These intermediate results imply:

Pi0→i0 = 1−
∑

j 6=i0
Pi0→j = 1−

∑

j 6=i0,j0
Pi0→j − Pi0→j0 ≥ (68)

≥ 1−
∑

j 6=i0,j0
Qi0→j −Qi0→j0

πj0

πi0

=

= 1−
∑

j 6=i0
Qi0→j +Qi0→j0

(

1−
πj0

πi0

)

= Qi0→i0 +Qi0→j0

(

1−
πj0

πi0

)

≥

≥ Qi0→j0

(

1−
πj0

πi0

)

> 0

that is, the chain is regular by virtue of lemma (8) and admits a unique

stationary law by virtue of Markov’s theorem.
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Metropolis’ Theorem is widely used in Physics, where it provides a
technique for simulating random variables with law given by:

πi =
e−βH(i)

Z(β)
, H : E → R, Z(β) =

∑

i∈E

e−βH(i) (69)

E being the configuration space of the classical system under study and
H its Hamiltonian. Notice that the knowledge of Z(β) (resulting from
an integration procedure which, for large systems of interacting parti-
cles, cannot be preformed neither analytically nor numerically) is not
necessary for applying (65).

Usually (65) is written, for i 6= j, in the form:

Pi→j = Qi→j min

(

1,
πj

πi

)

(70)

Qi→j is a trial move that is accepted or refused depending on the outcome

of a Metropolis test controlled by the term min
(

1,
πj

πi

)

.

We remind the reader that the hypothesis Qi→j = Qj→i was framed in
the proof of Metropolis’ theorem. This hypothesis can be removed, pro-
vided that Qj→i > 0 whenever Qi→j > 0; in such situation, Metropolis’
theorem still holds for the Markov chain:

Pi→j = Qi→j min

(

1,
πj Qj→i

πi Qi→j

)

i 6= j (71)

where it is meant that Pi→j = 0 if Qi→j = 0, whereas Pi→i is defined as
in (65).
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