
E. Vitali Lecture 3. Sampling of random variables

I. INTRODUCTION

In our study of mathematical statistics, we have learnt to use data
to infer the values of some parameter specifying the law of a random
variable modelling the outcomes of the experiment. A set of data:

(x1, . . . , xn) (1)

are interpreted as realizations of a sample (X1, . . . , Xn), that is:

(x1, . . . , xn) = (X1(ω), . . . , Xn(ω)) (2)

for a ω in some abstract probability space (Ω,F , P ) where the random
variables are defined. This interpretation allows then to define estimators
and confidence intervals, to test hypothesis and so on.

In this chapter we will take the opposite point of view: given the law
of a random variable X , or, equivalently, its density p(x) (if it exists), is it
possible to generate possible realizations of X? This is a central topic in
the realm of simulations, and is usually called the sampling of random
variables, or, equivalently, the sampling of probability densities.

II. MONTE CARLO INTEGRATION

One very important application of the sampling of probability densi-
ties is Monte Carlo integration. It is an extremely useful tool to eval-
uate integrals arising, for example, from statistical physics and quantum
mechanics. It becomes quite the unique way to face multi-dimensional in-
tegrals, when typical strategies would require an extremely huge number
of operations, beyond the possibility of any computer.

To state the problem, let’s consider an integral of the very general
form:

I =

∫

D

dx f(x) p(x) (3)

where D ⊂ R
d, f is any (measurable) function and p is a probability

density on D:

p(x) ≥ 0,

∫

D

dx p(x) = 1 (4)

The key observation is that, if X is a random variable having p(x) as its
probability density, the following equalities holds:

I = E [f(X)] (5)

∫

D

dx (f(x)− I)2 p(x) = V ar (f(X)) (6)

The law of large numbers and the central limit theorem, provided that
E [f(X)] and V ar (f(X)) are finite, guarantee that, if {Xi}+∞

i=1 is a se-
quence of independent and identically distributed random variables
with density p(x), we have:
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I = lim
n→+∞

1

n

n
∑

i=1

f(Xi) (7)

and:

1
n

∑n
i=1 f(Xi)− I
√

V ar(f(X))
n

(8)

converges in distribution to a standard normal random variable N(0, 1).
Thus, if we are able to sample p(x), i.e., in practice, to generate n points
in D:

(x1, . . . , xn) (9)

realizations of {Xi}ni=1:

(x1, . . . , xn) = (X1(ω), . . . , Xn(ω)) (10)

for a ω in some abstract probability space (Ω,F , P ) where the random
variables are defined, then we can evaluate:

I ≃ 1

n

n
∑

i=1

f(xi) (11)

and use mathematical statistics to estimate confidence intervals and so
on.

Precisely in the same way, finite or infinite summations:

I =
∑

x

f(x) p(x) (12)

can be dealt with whenever p(x) is a discrete probability density.
To summarize, the problem of evaluating an integral is transferred into

the problem of building up a (possibly large) number of point (x1, . . . , xn)
starting from the knowledge of a probability density p(x). Such problem
is in general not trivial and requires the formalism of stochastic processes.
We start from the basic generation of random numbers.

III. RANDOM NUMBER GENERATORS

Our starting point is the existence of the random number gener-

ators, which are algorithms able to sample a sequence of independent
uniform in (0, 1) random variables. The output of such an algorithm is
a sequence:

(u1, . . . , un) (13)

0 < ui < 1, realizations of n independent uniform in (0, 1) random
variables:

(U1, . . . , Un) (14)
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We are not going now to enter the details of the theory of random num-
ber generation, requiring complex notions of numbers theory beyond the
scope of this lectures. We simply mention the simplest algorithm, the
linear congruential generator (LCG), introduced by D.H. Lehmer in
1949, which builds up the sequence (u1, . . . , un) using the integers:

ij+1 = (aij + c) (mod m), j = 0, . . . , n (15)

where m, a, c ∈ N are positive integer numbers, called modulus, multi-

plicator and increment, while the starting term, i0, is a non-negative
integer called the seed of the generator; finally the uj are obatined as
uj = ij/(m − 1). In the following table we report typical values for the
parameters m, a, c:

Table I: parameters m,a, c of the LCG

Source m a c

gclib 231 1103515245 12345

Numerical Recipes 232 1664525 1013904223

java.util.Random 248 25214903917 11

The reader could feel a bit confused now, since we have claimed inde-
pendence while actually obtaining the sequence applying a deterministic
(and very simple!) function to a given number to obtain the following
one. This is the reason for the choices of parameter in the given table,
providing the conditions for the data (u1, . . . , un) to be modelled by inde-
pendent random variables. Statistical and numerical studies have shown
that such choices of parameters make the model very accurate, in the
sense discussed in the chapter about statistics.

The other important point is the seed i0: it can be chosen to be equal
to any non-negative integer number. If a program is used twice with the
same seed, it gives exactly the same output. Actually the seed can be
thought as the point ω ∈ Ω in some abstract probability space (Ω,F , P )
determining the output of the “experiment”.

(u1, . . . , un) = (U1(ω), . . . , Un(ω)) (16)

IV. SIMULATION OF NORMAL RANDOM VARIABLES

We have thus learned that, with a very simple alogorithm, we can
sample the uniform distribution in (0, 1). What about other probability
densities? In general, this problem is highly non trivial and requires the
formalism of stochastic processes which we will discuss in the following
chapters. Nevertheless, there are some situations allowing to solve the
problem in a simple and elegant way, relying on transformations between
random variables. Due to the outstanding importance of normal random
variables, our first example is the sampling the density N(0, 1):

p(x) =
1√
2π

exp

(

−x2

2

)

(17)
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We will exploit the transformation law for densities:

pY (y) = pX(g
−1(y))

∣

∣det(Jg−1(y))
∣

∣ (18)

valid whenever Y = g(X), g being a diffeomorphism between open sub-
sets of Rd. Jg−1(y) is the Jacobian matrix of the inverse g−1.

We specialize the transformation law to the special case in two di-
mensions X = (U1, U2), U1, U2 being independent uniform in (0, 1)
and:

g(u1, u2) =
(

√

−2 log(u1) cos(2πu2),
√

−2 log(u1) sin(2πu2)
)

(19)

We let Y = (Y1, Y2) and evaluate its density. The inverse if g is simply
checked to be:

g−1(y1, y2) =

(

exp

(

−y21 + y22
2

)

,
1

2π
artg

(

y2
y1

))

(20)

while its Jacobian is given by:

Jg−1(y1, y2) =





−y1 exp
(

−y2
1
+y2

2

2

)

−y2 exp
(

−y2
1
+y2

2

2

)

− y2/y21
2π(1+y2

2
/y2

1)
1/y1

2π(1+y2
2
/y2

1)



 (21)

The determinant is:

det (Jg−1(y1, y2)) = − (1 + y22/y
2
1)

2π (1 + y22/y
2
1)

exp

(

−y21 + y22
2

)

(22)

implying that Y = (Y1, Y2) = g(U1, U2) has density:

pY (y1, y2) =
1

2π
exp

(

−y21 + y22
2

)

(23)

which means that Y1 and Y2 are independent standard normal ran-

dom variables.
Thus, in practice, in order to sample one standard normal random

variable, it is possible to use a random number generator twice, obtaining
two numbers (u1, u2), and to apply the following Box-Muller formula:

y =
√

−2 log(u1) cos(2πu2) (24)

V. THE INVERSE CUMULATIVE DISTRIBUTION

FUNCTION

We present now another very important example of the possibility
of sampling one-dimensional random variables given a random number
generator. Let’s consider a given probability density p(x) on R and let
F (x) =

∫ x

−∞
dy p(y), the cumulative distribution function of a random

variable having p(x) as probability density. We work under the hypoth-
esis that there exists an interval (α, β), −∞ ≤ α < β ≤ +∞ such that
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p(x) > 0 for x ∈ (α, β) and p(x) = 0 outside that interval. F (x) is thus
strictly increasing on (α, β) and its values lie in [0, 1]. We define now
Y = F−1(U) where U is uniform in (0, 1). The key point is that the
cumulative distribution of Y coincides with F (x), in fact:

FY (y) = P (Y ≤ y) = P (F−1(U) ≤ y) = P (U ≤ F (y)) = F (y) (25)

and thus:

pY (y) = p(y) (26)

This means that we can sample any one-dimensional probability density
p(x) using a random number generator if we are able to evaluate F−1: the
generator provides a realization of a uniform random variable U , and, if
we apply F−1, we obtain a realization of a random variable with density
p(x).

ω  U(ω) F−1(U(ω)) (27)

For example, if we wish to sample the lorentzian probability density:

p(x) =
1

π

Γ

Γ2 + x2
(28)

we evaluate:

F (x) =

∫ x

−∞

dy p(y) =
1

π
artg

(x

Γ

)

+
1

2
(29)

We know that, if U is uniform in (0, 1):

Y = F−1(U) = Γ tan

(

π

(

U − 1

2

))

(30)

has density p(x).
As another example, if p(x) is the exponential density with param-

eter λ:

p(x) = λ exp(−λx) 1(0,+∞)(x), λ > 0 (31)

we evaluate:

F (x) =

∫ x

−∞

dy p(y) = (1− exp(−λx)) 1(0,+∞)(x) (32)

so that, if U is uniform in (0, 1):

Y = F−1(U) = −1

λ
log(1− U) (33)

has density p(x).
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VI. DISCRETE RANDOM VARIABLES

We discuss now the typical situation when we wish to sample a discrete
probability density p(x), non-zero only in the discrete set {x1, . . . , xn},
which we assume to be finite. The typical tool we can use is the following:
we define q0 = 0, q1 = p(x1), q2 = p(x1) + p(x2), qm−1 = p(x1) + p(x2) +
· · · + p(xm−1) and, finally, qn = 1. We have naturally 0 = q0 < · · · <
qn = 1. If U is uniform in (0, 1), we define:

Y = xj , if qj−1 ≤ U ≤ qj (34)

Y is clearly a discrete random variable and has precisely the discrete
density p(x), as follows from the following simple calculation:

P (Y = xj) = P (qj−1 ≤ U ≤ qj) = qj − qj−1 = p(xj) (35)

VII. PERSPECTIVES

In the previous section we have presented some tools to sample random
variables, once a random number generator is available. Unfortunately,
these tools are, in general, not available in the multidimensional case,
which is the most interesting situation for Monte Carlo integration to
be used. For example, in classical statistical mechanics, one wishes, for
example, to sample the Boltzmann weight of a classical fluid in thermal
equilibrium at temperature T = 1/β:

p(~r1, . . . , ~rN) =
exp

(

−β
∑

i<j u (|~ri − ~rj |)
)

Z (36)

u(r) being the interatomic potential. Another example is the Ising model,
desribing a collection of spins (σ1, . . . , σN), σi = ±1 on an hypercubic
lattice, whose equilibrium properties, at temperature T = 1/β and at the
presence of a magnetic field B, are described by the (discrete) probability
density:

p(σ1, . . . , σN ) =
exp

(

−β
(

−
∑

〈i,j〉 Jσiσj − B
∑

i σi

))

Z
(37)

J > 0 describing a ferromagnetic coupling between the nearest neigh-
bours spins (the simble 〈i, j〉 denotes nearest neighbours).

Using the Ising model as a guiding example, we wish for example to es-
timate the magnetization of the system, as a function of the temperature
and the magnetic field:

m(β,B) =
1

N

N
∑

i=1

〈σi〉 (38)

where we have used the common notation of statistical physics for the
expected value:
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〈σi〉 = E [σi] =
∑

(σ1,...,σN )

σi p(σ1, . . . , σN) (39)

This summation (2N terms) is not feasible when N becomes large, re-
quiring Monte Carlo integration techniques.

If we are able to sample p(σ1, . . . , σN ), then we can estimate the mag-
netization. The reader will notice that none of the techniques presented
in this chapter is suitable. We will learn to perform such a sampling, but
we will need the formalism of stochastic processes that we will present in
the next chapter.
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