XXXI PhD cycle - 1st year Workshop 20th October 2016

Nonclassicality in Continuous Variables Quantum Systems

Francesco Albarelli Applied Quantum Mechanics group Università degli Studi di Milano

Continuous Variable Quantum Systems

Quantum optical systems

Optomechanical systems

• Trapped ions

- General bosonic degrees of freedom

Notation for Bosonic Single-Mode Continuous Variable Systems

- Bosonic field operators
- Quadrature operators

$$\hat{x}_0 = \hat{q} \quad \hat{x}_{\pi/2} = \hat{p}$$

- Coherent states $\hat{a}|\alpha\rangle = \alpha |\alpha\rangle$
- Discrete Fock basis
- Continuous position basis

$$\begin{bmatrix} \hat{a}, \hat{a}^{\dagger} \end{bmatrix} = 1$$
$$\hat{x}_{\phi} = \frac{1}{\sqrt{2}} \left(\hat{a}e^{-i\phi} + \hat{a}^{\dagger}e^{i\phi} \right)$$

$$\left| \alpha \right\rangle = e^{-\frac{\left| \alpha \right|^2}{2}} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} \left| n \right\rangle \quad \alpha \in \mathbb{C}$$

$$\rho = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \rho_{nm} |n\rangle \langle m|$$
$$\rho = \int dx dy \,\rho(x, y) |x\rangle \langle y|$$

Quantum Mechanics in Phase Space

- Single mode: 2D (classical) phase space
- Quantum mechanics can be entirely formulated in phase-space
- Quantum states
 represented as "quasidistributions" in phase space (not unique!)

Wigner function

 $W(q,p) = \frac{1}{2\pi} \int dy \, \langle x + \frac{y}{2} | \rho | x - \frac{y}{2} \rangle e^{-iyp}$

- Marginals are the quadrature distributions
- Hamiltonian linear or quadratic in q and p

→ linear transformations of the mode operators

→ classical phase space dynamics (Liouville equation)

What is nonclassicality?

- Many different notions!
- Might be physical-context dependent (e.g. light vs matter excitations)
- Multipartite systems → nonclassical correlations (entanglement, discord)
- Basis dependent notions → coherence ("classical" if diagonal in some basis)
- Focus: single mode systems (no subsystems) and phase-space based criteria & measures

Glauber P-Nonclassicality

- P is a different quasiprobability distribution (related to the Wigner via Gaussian convolution)
- If P is positive & "wellbehaved" ρ is a mixture of coherent states
- Quantum optics: states that show a phenomenology explained by Maxwell equations

$$\rho = \int \mathrm{d}^2 \, \alpha P(\alpha) |\alpha\rangle \langle \alpha |$$

- If P is NOT positive & "well-behaved"
 - $\rightarrow \rho$ is P-nonclassical

Examples of Glauber P-Nonclassicality

P-classical

- Coherent states
- Thermals states
- Roughly speaking: quantum states of light implemented by linear optics

P-nonclassical

- Fock states |n
 angle
- Squeezed states

$$|r\rangle = e^{\frac{1}{2}\left(r^*\hat{a}^2 - r\hat{a}^{\dagger 2}\right)}|0\rangle$$

• "Cat" states

$$\propto |\alpha\rangle \pm |-\alpha\rangle$$

 Nonlinear optical elements needed

Non-Gaussian states

Gaussian states:

- Wigner function is a Gaussian
- Thermal or ground states of linear and quadratic Hamiltonians
- "Easily" created in quantum optics labs
- Hudson's theorem:

The only W-classical **pure states** are **Gaussian** states

Non-Gaussian states:

- Used to improve some CV quantum-information protocols (e.g. teleportation, cloning)
- Usually more difficult to implement & control in the lab
- Also non-Gaussianity can be quantified [Genoni & Paris PRA 2008]

Negativity of the Wigner function

- The Wigner function is always well defined, but can have negative values
- Quantum circuits with initial states and quantum operations characterized by positive Wigner functions can be classically efficiently simulated

[Mari & Eisert, PRL 2012; Veitch et al., NJP 2012]

- If W is NOT positive
 - $\rightarrow \rho$ is W-nonclassical
- Quantification of Wnonclassicality via volume of negative part

[Kenfack & Życzkowski, J. Opt. B 2004]

Examples of W-nonclassicality

W-classical

 Every Gaussian states (including squeezed states)

W-nonclassical

- Fock states
- "Cat" states

"Zoology" of CV quantum states

11

Present Research Lines

- Comparison & study of the interplay between different forms of nonclassicality
- Find "practical" applications where some form of nonclassicality brings an advantage
- Find the proper physical "resources" for different tasks

Comparison Between Different Forms of Nonclassicality

 Monotony between measures of non-Gaussianity & Wnonclassicality for ground states of anharmonic oscillators (not guaranteed by Hudson's theorem) [Albarelli et al. PRA 2016]

• Comparison between W-nonclassicality and quantum probability backflow [Albarelli, Guaita & Paris, IJQI 2016]

Metrological Application of non-Gaussian states

- "Practical" problem: estimation of the loss coefficient of a bosonic lossy channel (well studied problem)
- New: add a nonlinear self-Kerr interaction (i.e. change the channel) and use Gaussian input states
- Improved estimation (figure of merit: Quantum Fisher
 Information), relevant in some regimes of the parameters [Rossi, Albarelli & Paris, PRA 2016]

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \gamma \left(\hat{a}\rho \hat{a}^{\dagger} - \frac{1}{2}\hat{a}^{\dagger}\hat{a}\rho - \frac{1}{2}\rho \hat{a}^{\dagger}\hat{a} \right)$$

$$\hat{H}_{K} = \lambda \left(\hat{a}^{\dagger}\hat{a}\right)^{2}$$

$$\downarrow$$

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = i\left[\hat{H}_{K},\rho\right] + \gamma \left(\hat{a}\rho\hat{a}^{\dagger} - \frac{1}{2}\hat{a}^{\dagger}\hat{a}\rho - \frac{1}{2}\rho\hat{a}^{\dagger}\hat{a}\right)$$

Metrological Application of non-Gaussian states

- A substantial improvement for "small-times"
- Kerr interactions brings the state outside the set of Gaussian states
- BUT not clear which particular "direction" of the Hilbert to explore for increased precision, i.e. the physical resource is not clear yet

Future Research Lines

- Assess the role of W-nonclassicality in practical CV quantum computation schemes
- Possibility of defining a proper resource theory for some form of nonclassicality (recently done for squeezing [Idel, Lercher & Wolf, JPA 2016])
- Comparison between nonclassicality and "complexity" of phase-space distributions
- Extend previous analysis of ground states to **thermal states** of anharmonic oscillators

Detailed List of Cited References

- A. Mari and J. Eisert, *Positive Wigner Functions Render Classical Simulation of Quantum Computation Efficient,* Phys. Rev. Lett. **109** 230503 (2012)
- V. Veitch, C. Ferrie, D. Gross and J. Emerson, *Negative quasi-probability as a resource for quantum computation*, New J. Phys. **14** 113011 (2012)
- A. Kenfak and K. Życzkowski, *Negativity of the Wigner function as an indicator of nonclassicality*, J. Opt. B **10** 396 (2004)
- F. Albarelli, A. Ferraro, M. Paternostro and M. G. A. Paris, *Nonlinearity as a resource for nonclassicality in anharmonic systems*, Phys. Rev. A **93** 032112 (2016)
- F. Albarelli, T. Guaita and M. G. A. Paris, *Quantum backflow effect and nonclassicality*, Int. J. Quantum Inf. **7** 1650032 (2016)
- M. A. C. Rossi, F. Albarelli and M. G. A. Paris, *Enhanced estimation of loss in the presence of Kerr nonlinearity*, Phys. Rev. A **93** 053805 (2016)
- M. Idel, D. Lercher and M. M. Wolf, *An operational measure for squeezing*, J. Phys. A **49** 445304 (2016)