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Continuous Variable Quantum Systems

● Quantum optical systems

● Optomechanical systems

● Trapped ions

● General bosonic degrees of freedom
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Notation for Bosonic Single-Mode 
Continuous Variable Systems

● Bosonic field operators
● Quadrature operators

● Coherent states

● Discrete Fock basis
● Continuous position 

basis
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Quantum Mechanics in Phase Space

● Single mode: 2D 
(classical) phase space

● Quantum mechanics can 
be entirely formulated in 
phase-space

● Quantum states 
represented as “quasi-
distributions” in phase 
space (not unique!)

● Wigner function

● Marginals are the quadrature 
distributions 

● Hamiltonian linear or 
quadratic in q and p 

→ linear transformations of 
the mode operators

→ classical phase space 
dynamics (Liouville equation)



5

What is nonclassicality?

● Many different notions!
● Might be physical-context dependent (e.g. light vs matter 

excitations)
● Multipartite systems → nonclassical correlations 

(entanglement, discord)
● Basis dependent notions → coherence (“classical” if 

diagonal in some basis)
● Focus: single mode systems (no subsystems) and

 phase-space based criteria & measures
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Glauber P-Nonclassicality

● P is a different quasi-
probability distribution 
(related to the Wigner via 
Gaussian convolution)

● If P is positive & “well-
behaved”  is a mixture of ρ
coherent states

● Quantum optics: states that 
show a phenomenology 
explained by Maxwell 
equations

● If P is NOT positive & 
“well-behaved” 

→  is P-nonclassical ρ  

Roy Glauber
Nobel Prize 2005
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Examples of Glauber P-Nonclassicality

P-classical
● Coherent states 
● Thermals states
● Roughly speaking: 

quantum states of light 
implemented by linear 
optics

P-nonclassical
● Fock states
● Squeezed states

● “Cat” states

● Nonlinear optical 
elements needed
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Non-Gaussian states

Gaussian states: 
● Wigner function is a Gaussian
● Thermal or ground states of 

linear and quadratic 
Hamiltonians

● “Easily” created in quantum 
optics labs

● Hudson’s theorem:

The only W-classical pure 
states are Gaussian states

Non-Gaussian states:
● Used to improve some CV 

quantum-information 
protocols (e.g. 
teleportation, cloning)

● Usually more difficult to 
implement & control in the 
lab

● Also non-Gaussianity can be 
quantified [Genoni & Paris PRA 2008]
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Negativity of the Wigner function

● The Wigner function is 
always well defined, but 
can have negative values

● Quantum circuits with 
initial states and quantum 
operations characterized 
by positive Wigner 
functions can be classically 
efficiently simulated
[Mari & Eisert, PRL 2012; Veitch et al. , NJP 2012]

● If W is NOT positive 

→  is W-nonclassicalρ

● Quantification of W-
nonclassicality via 
volume of negative part
[Kenfack & Życzkowski, J. Opt. B 2004]
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Examples of W-nonclassicality

W-classical
● Every Gaussian states 

(including squeezed 
states)

W-nonclassical
● Fock states
● “Cat” states

Wigner function of
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“Zoology” of CV quantum states

 
CV
quantum statesW-classical

GaussianP-classical

Gaussian
convex hull
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Present Research Lines

● Comparison & study of the interplay between 
different forms of nonclassicality

● Find “practical” applications where some form of 
nonclassicality brings an advantage

● Find the proper physical “resources” for different 
tasks
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Comparison Between Different Forms of 
Nonclassicality

● Monotony between measures of non-Gaussianity & W-
nonclassicality for ground states of anharmonic oscillators 
(not guaranteed by Hudson’s theorem) [Albarelli et al. PRA 2016]

● Comparison between W-nonclassicality and quantum 
probability backflow [Albarelli, Guaita & Paris, IJQI 2016]
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Metrological Application of non-Gaussian 
states

● “Practical” problem: estimation of 
the loss coefficient of a bosonic 
lossy channel (well studied 
problem)

● New: add a nonlinear self-Kerr 
interaction (i.e. change the 
channel) and use Gaussian input 
states 

● Improved estimation (figure of 
merit: Quantum Fisher 
Information), relevant in some 
regimes of the parameters [Rossi, 
Albarelli & Paris, PRA 2016]
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Metrological Application of non-Gaussian 
states

● A substantial improvement 
for “small-times”

● Kerr interactions brings the 
state outside the set of 
Gaussian states

● BUT not clear which 
particular “direction” of the 
Hilbert to explore for 
increased precision, i.e. the 
physical resource is not clear 
yet

Gain in the QFI w.r.t. 
the Gaussian case,
in %

Rescaled time parameter
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Future Research Lines

● Assess the role of W-nonclassicality in practical CV 
quantum computation schemes

● Possibility of defining a proper resource theory for 
some form of nonclassicality (recently done for 
squeezing [Idel, Lercher & Wolf, JPA 2016])

● Comparison between nonclassicality and 
“complexity” of phase-space distributions

● Extend previous analysis of ground states to 
thermal states of anharmonic oscillators
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