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Radiomics + Magnetic Resonance

. Quality and reliability of radiomic features:

Retrospective data sets ) ey eve
pECHY evaluation of variability

CT PET MRI US
reproducibility LC LC, OC x x
image acquisition EADIG, LG, UG, O1E;
Iigarall?eters LC, slice thickness | 2D-3D n.u?de, bed X x
position

scanners LC )( X X

reconstljuctlon LC ADC, LC, EC, OC x x
algorithm

respiratory motion LC LC,0OC x x

dedicated phantom x x x x

*data based on

Larue RTHM, Defraene G, De Ruysscher D, Lambin P, Van Elmpt W. “Quantitative radiomics studies for tissue characterization: a review of
technology and methodological procedures”. Br | Radiol 2017; 90: 20160665.

LC = Lung Cancer, OC = Oesophageal Cancer, AGC = Adrenal Gland Carcinoma, EC = Epiglottis Cancer
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Phantom studies

QC phantom dedicated phantom

repeatability and texture
robustness analysis
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Materials & Methods

MR scanner @ IEQO,
Milano

ﬂ 15T (63.86 MHz)

pelvic district:

- gynaecological
cancer

- prostate cancer
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Materials & Methods

1 week 1 week X 1 month
to t1 t i3
T2-w x 10 T2-w x 10 T2-w x 10 T2-w x 10

I NO change in setup/parameters!

v

impact of the process of images acquisition on each feature
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Materials & Methods

Region Of Interest
(ROID)

R1-Big
R1-Med
R1-Sma

R2-Big
R2-Med
R2-Sma

R3-Big
R3-Med
R3-Sma
10 R-All
11 R-Hom

O | [ 3 (S |G [ = (WD N |-
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Materials & Methods

Data Analysis
short-term repeatability long-term repeatability
INTRA-comparison INTER-comparison
9 v
r=196 —
1] volume study
range of variability? which features?
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Results: short-term repeatability

100 | | |
acq.to ©r<1%
90 - 1% <r<10% -
=-r > 10%
80 n

Percentage %

to t1 t t;
r<1% 33% 31% 25% 22%
1% <r<10% 63% 65% 66% 72%
r>10% 4% 5% 8% 6%
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Results: volume study

ROI 1 ROI 2 ROI 3
100 T 100 | 100 T
——r<1% ——r< 1% ——r<1%
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Which volumes?

R1-B | R1-M | R1-S | R2-B | R2-M | R2-S | R3-B | R3-M | R3-S | tumour
x (cm) | 1.1 1.1 1.1 1.4 1.4 1.4 0.7 0.7 0.7 7.0
y (cm) | 4.7 2.4 1.2 | 12.0 6.0 3.0 | 12.0 6.0 3.0 8.0
z(cm) | 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.5
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x (cm) | 1.1 1.1 1.1 1.4 1.4 1.4 0.7 0.7 0.7 7.0
y (cm) | 4.7 2.4 1.2 | 12.0 6.0 3.0 | 12.0 6.0 3.0 8.0
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| SMALL TUMOUR VOLUMES
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Results: long-term repeatability

V feature to t t ts
R1-B L(0,R1-B) (1,R1-B) (2,R1-B) U3,R1-B)
R1-M LL(0,R1-M) L3, R1-M) L(2,R1-M) L(3,R1-M)
R1-S L(o0,R1-S) W(1,R1-S) U(2,R1-S) U3 R1-S)
R-A LL(0,R-A) LL(1,R-A) LL2,R-A) LLG,R-A)
R-H L(0,R-H) U@,R-H) Ue,R-H) UG,R-H)

9th October 2018, Milano
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IN: features with r < 10% V t;, ROI

Results: long-term repeatability

V feature to t t ts
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paired-sample t-test

9th October 2018, Milano

NN NS

Po1

16

P12

P23

Linda Bianchini



IN: features with r < 10% V t;, ROI

Results: long-term repeatability

V feature to t t ts
R1-B L(0,R1-B) (1,R1-B) (2,R1-B) U3,R1-B)
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R-A LL(0,R-A) LL(1,R-A) LL2,R-A) LLG,R-A)
R-H L(0,R-H) U@,R-H) Ue,R-H) UG,R-H)

paired-sample t-test

OUT: features with long-term repeatability
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Texture phantom

Phantoms for texture analysis of MR images. Long-term
and multi-center study

Daniel Jirak,2 Monika Dezortova, and Milan Hajek
Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine,
Videnska 1958/9, Prague, Czech Republic 140 21, Czech Republic

(Received 18 April 2003; revised 17 December 2003; accepted for publication 17 December
2003; published 26 February 2004)
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Texture phantom

Phantoms for texture analysis of MR images. Long-term
and multi-center study
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Calibration curves: T1 and T> for MnCl,
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Conclusion

? *g Challenge: can we “trust” the radiomic features extracted from MR images?

/é ) Preliminary results:

1. A workflow to test the reliability of the features, both for short-
and long-term repeatability in the same experimental condition,
has been established.

2. The unstable radiomic features (i.e. with dependency on image
acquisition process) has been identified.

3. A dedicated phantom has been designed to simulate in vivo
conditions for further radiomic analyses.
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Q What's next?

Final aim: protocol for application in clinics

1. Optimize and test the dedicated phantom

2. Study the dependency of the radiomic features on the MR
sequence parameters

3. Test other sequences

4. Test other scanners (manufacturers, higher fields)

9th October 2018, Milano 20 Linda Bianchini
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GLCM and GLRLM
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GLCM and GLRLM

GLCM, 0 =0° GLRLM, O = 0° run length =2

Image Gray level Run length
012 3 1 2 3

211]1 .0 1 — 0

U U
1|10 g o1 |2 g 1 2
0|3]3 = 2 z 2

QO 3 O 3 1
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def. final features - GLCM25

Ng Ng

autocorrelation = Zz ijP(i,))

i=1 j=1

Px(i) = Zj.v;"l P(i,j) be the marginal row probabilities,

IMC2 = /1 — e—2(HXY2=HXY)

py (i) = Zf&’l P(i,j) be the marginal column probabilites, ——»
HXY = =¥ ¥ p(i.j) log (p(i.)))
t J

2N

sum average = Z[ipﬁy(i)]

=2

2N,

sum entropy = — Z P,., (1) ]ogz[PX+y(i)]
i=2

2Ng

sum variance = Z(i — SE)?Pyyy (1)
i=2

19th September 2018, Torino 24 Linda Bianchini



def. final features - GLRLM25

2) High Gray-Level Run Emphasis (HGRE):

A

MoOAN

1 y ]. ‘)

HGREz—E i, )17 = — Gl2)-17.
o Z ple. ) -1 " Palt) -t

= 1=1 el |
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Step 3: Features extraction

Image Biomarker Standardisation Initiative (IBSI)

Zwanenburg A, Leger S, Vallieres M, Lock S. Image biomarker standardisation initiative. arXiv preprint arXiv:1612.07003

The image biomarker standardisation initiative (IBSI) is an independent international collabora-
tion which works towards standardising the extraction of image biomarkers from acquired imaging
for the purpose of high-throughput quantitative image analysis (radiomics). Lack of reproducib-
ility and validation of high-throughput quantitative image analysis studies is considered to be a
major challenge for the field 33884 Part of this challenge lies in the scantiness of consensus-based
guidelines and definitions for the process of translating acquired imaging into high-throughput
image biomarkers. The IBSI therefore seeks to provide image biomarker nomenclature and defini-
tions, benchmark data sets, and benchmark values to verify image processing and image biomarker

calculations, as well as reporting guidelines, for high-throughput image analysis.

4th October 2018, Milano 26 L. Bianchini
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Step 3: Features extraction

IBSI digital phantom

Zwanenburg A, Leger S, Vallieres M, Lock S. Image
biomarker standardisation initiative. arXiv preprint
arXiv:1612.07003
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Step 4: Statistics and mo

Feature selection methods

Dimensionality reduction to
reduce the risk of overfitting

l

subset of relevant features

l

WILCOXON TEST o«

Machine learning analysis

del building

Classification methods

ML classification procedures
for building predictive model

l

RANDOM FOREST
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Step 4: Statistics and model building

group 0 group 1

o Random forest
Training set * classifier learns
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Step 4: Statistics and model building

group 0 group 1 group 0 group 1

Random forest Decision by the

Training set = (lassifier learns ==p»> New patient = algorithm
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