

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Repeatability and robustness of radiomic features extracted from Magnetic Resonance images of pelvic district: a phantom study

L. Bianchini¹, F. Botta², D. Origgi², M. Cremonesi², P. Arosio¹, A. Lascialfari¹

¹Dipartimento di Fisica and INSTM, Università degli Studi di Milano ²IEO, Istituto Europeo di Oncologia IRCCS, Milano

linda.bianchini@unimi.it

First-year students Workshop 2018 Università degli Studi di Milano, Dipartimento di Fisica, 9th October 2018

Introducion to Radiomics

Introducion to Radiomics

1	313	289	305	293	266	312	407
	302	279	293	271	228	270	376
	285	265	274	252	205	236	340
	271	255	264	250	209	227	318
	267	257	268	264	231	239	315
	273	264	278	281	248	248	313
	285	267	280	288	255	244	297
	295	265	266	283	260	239	271
	301	261	245	275	276	250	254
	300	259	232	269	296	276	256
	293	262	232	265	302	292	266
	282	265	241	261	287	283	269
	262	251	242	252	261	260	266
	231	219	228	241	242	248	269
	195	183	211	236	244	260	283
	169	165	207	243	260	279	289
	169	176	225	261	275	281	274
	194	213	258	281	277	265	246
	223	252	287	291	270	247	230
	239	276	299	291	264	243	233
	242	284	295	281	261	246	240

1	313	289	305	293	266	312	407
	302	279	293	271	228	270	376
	285	265	274	252	205	236	340
	271	255	264	250	209	227	318
	267	257	268	264	231	239	315
	273	264	278	281	248	248	313
	285	267	280	288	255	244	297
	295	265	266	283	260	239	271
	301	261	245	275	276	250	254
	300	259	232	269	296	276	256
	293	262	232	265	302	292	266
	282	265	241	261	287	283	269
	262	251	242	252	261	260	266
	231	219	228	241	242	248	269
	195	183	211	236	244	260	283
	169	165	207	243	260	279	289
	169	176	225	261	275	281	274
	194	213	258	281	277	265	246
	223	252	287	291	270	247	230
	239	276	299	291	264	243	233
	242	284	295	281	261	246	240

_							
1	313	289	305	293	266	312	407
	302	279	293	271	228	270	376
	285	265	274	252	205	236	340
	271	255	264	250	209	227	318
	267	257	268	264	231	239	315
	273	264	278	281	248	248	313
	285	267	280	288	255	244	297
	295	265	266	283	260	239	271
	301	261	245	275	276	250	254
	300	259	232	269	296	276	256
	293	262	232	265	302	292	266
	282	265	241	261	287	283	269
	262	251	242	252	261	260	266
	231	219	228	241	242	248	269
	195	183	211	236	244	260	283
	169	165	207	243	260	279	289
	169	176	225	261	275	281	274
	194	213	258	281	277	265	246
	223	252	287	291	270	247	230
	239	276	299	291	264	243	233
\checkmark	242	284	295	281	261	246	240

9th October 2018, Milano

Linda Bianchini

support clinical decision

in oncology

IOP Publishing | Institute of Physics and Engineering in Medicine

Physics in Medicine & Biology

Phys. Med. Biol. 60 (2015) 2685-2701

doi:10.1088/0031-9155/60/7/2685

2015

Texture features on T2-weighted magnetic resonance imaging: new potential biomarkers for prostate cancer aggressiveness

A Vignati¹, S Mazzetti¹, V Giannini¹, F Russo¹, E Bollito², F Porpiglia³, M Stasi⁴ and D Regge¹

IOP Publishing | Institute of Physics and Engineering in Medicine

Physics in Medicine & Biology

Phys. Med. Biol. 60 (2015) 2685-2701

doi:10.1088/0031-9155/60/7/2685

<u>2015</u>

Texture features on T2-weighted magnetic resonance imaging: new potential biomarkers for prostate cancer aggressiveness

A Vignati¹, S Mazzetti¹, V Giannini¹, F Russ F Porpiglia³, M Stasi⁴ and D Regge¹

Contents lists available at ScienceDirect

Physica Medica

journal homepage: http://www.physicamedica.com

Original paper

Characterization of cervical lymph-nodes using a multi-parametric and multi-modal approach for an early prediction of tumor response to chemo-radiotherapy

Elisa Scalco^{a,*,1}, Simona Marzi^{b,1}, Giuseppe Sanguineti^c, Antonello Vidiri^d, Giovanna Rizzo^a

IOP Publishing | Institute of Physics and Engineering in Medicine

Physics in Medicine & Biology

Phys. Med. Biol. 60 (2015) 2685-2701

doi:10.1088/0031-9155/60/7/2685

<u>2015</u>

Texture features on T2-weighted magnetic resonance imaging: new potential biomarkers for prostate cancer aggressiveness

A Vignati¹, S Mazzetti¹, V Giannini¹, F Russ F Porpiglia³, M Stasi⁴ and D Regge¹

Contents lists available at ScienceDirect

Physica Medica

journal homepage: http://www.physicamedica.com

Original paper

Characterization of cervical lymph-nodes using a multi-parametric and multi-modal approach for an early prediction of tumor response to chemo-radiotherapy

Elisa Scalco^{a,*,1}, Simona Marzi^{b,1}, Giuseppe Sanguineti^c, Antonello Vidiri^d, Giovanna Rizzo^a

development of a robust and validated protocol for the extraction of radiomic features from MR images

Retrospective data sets

Quality and reliability of radiomic features: evaluation of variability

Retrospective data sets

Quality and reliability of radiomic features: evaluation of variability

	СТ	PET	MRI	US
reproducibility	LC	LC, OC	×	×
image acquisition parameters	LC, slice thickness	ADC, LC, EC, OC, 2D-3D mode, bed position	×	×
scanners	LC	×	×	×
reconstruction algorithm	LC	ADC, LC, EC, OC	×	×
respiratory motion	LC	LC,OC	×	×
dedicated phantom	×	×	×	×

*data based on

Larue RTHM, Defraene G, De Ruysscher D, Lambin P, Van Elmpt W. "Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures". *Br J Radiol* **2017**; 90: 20160665.

LC = Lung Cancer, OC = Oesophageal Cancer, AGC = Adrenal Gland Carcinoma, EC = Epiglottis Cancer

Phantom studies

Phantom studies

dedicated phantom

dedicated phantom

I NO change in setup/parameters!

impact of the process of images acquisition on each feature

	Region Of Interest (ROI)
1	R1-Big
2	R1-Med
3	R1-Sma
4	R2-Big
5	R2-Med
6	R2-Sma
7	R3-Big
8	R3-Med
9	R3-Sma
10	R-All
11	R-Hom

Data Analysis

Results: short-term repeatability

9th October 2018, Milano

Results: volume study

9th October 2018, Milano

Which volumes?

	R1-B	R1-M	R1-S	R2-B	R2-M	R2-S	R3-B	R3-M	R3-S	tumour
x (cm)	1.1	1.1	1.1	1.4	1.4	1.4	0.7	0.7	0.7	7.0
y (cm)	4.7	2.4	1.2	12.0	6.0	3.0	12.0	6.0	3.0	8.0
z (cm)	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.5

Which volumes?

	R1-B	R1-M	R1-S	R2-B	R2-M	R2-S	R3-B	R3-M	R3-S	tumour
x (cm)	1.1	1.1	1.1	1.4	1.4	1.4	0.7	0.7	0.7	7.0
y (cm)	4.7	2.4	1.2	12.0	6.0	3.0	12.0	6.0	3.0	8.0
z (cm)	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.5

IN: features with $r < 10\% \forall t_i$, *ROI*

IN: features with $r < 10\% \forall t_i$, *ROI*

∀ feature	t ₀	t 1	t ₂	t ₃
R1-B	μ(0,R1-B)	μ(1,R1-B)	μ(2,R1-B)	μ(3,R1-B)
R1-M	μ(0,R1-M)	μ(1,R1-M)	μ(2,R1-M)	µ(3,R1-M)
R1-S	μ _(0,R1-S)	µ(1,R1-S)	μ _(2,R1-S)	μ(3,R1-S)
				•••
R-A	μ(0,R-A)	μ(1,R-A)	μ(2,R-A)	μ(3,R-A)
R-H	μ _(0,R-H)	μ(1,R-H)	μ(2,R-H)	μ(3,R-H)

IN: features with $r < 10\% \forall t_i$, *ROI*

	∀ feature	t ₀	t ₁	t_2	t ₃
	R1-B	μ(0,R1-B)	μ(1,R1-B)	μ(2,R1-B)	μ(3,R1-B)
	R1-M	μ(0,R1-M)	μ(1,R1-M)	μ(2,R1-M)	μ(3,R1-M)
	R1-S	μ _(0,R1-S)	μ _(1,R1-S)	μ _(2,R1-S)	μ _(3,R1-S)
	•••		•••		
	R-A	μ(0,R-A)	μ(1,R-A)	μ(2,R-A)	μ(3,R-A)
	R-H	μ _(0,R-H)	μ _(1,R-H)	μ _(2,R-H)	μ(3,R-H)
paired-san	nple t-test	po)1 F) 12	p ₂₃

IN: features with $r < 10\% \forall t_i$, ROI

	∀ feature	t ₀	t ₁	t ₂	t ₃		
	R1-B	μ(0,R1-B)	µ(1,R1-B)	µ(2,R1-B)	μ(3,R1-B)		
	R1-M	μ(0,R1-M)	µ(1,R1-M)	μ(2,R1-M)	μ(3,R1-M)		
	R1-S	µ(0,R1-S)	μ _(1,R1-S)	µ(2,R1-S)	μ(3,R1-S)		
	•••	•••	•••	•••			
	R-A	μ(0,R-A)	μ(1,R-A)	μ(2,R-A)	μ(3,R-A)		
	R-H	μ _(0,R-H)	μ _(1,R-H)	μ _(2,R-H)	μ(_{3,R-H})		
paired-san	nple t-test	po		12	p ₂₃		

OUT: features with long-term repeatability

Phantoms for texture analysis of MR images. Long-term and multi-center study

Daniel Jirák,^{a)} Monika Dezortová, and Milan Hájek

Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague, Czech Republic 140 21, Czech Republic

(Received 18 April 2003; revised 17 December 2003; accepted for publication 17 December 2003; published 26 February 2004)

Phantoms for texture analysis of MR images. Long-term and multi-center study

Daniel Jirák,^{a)} Monika Dezortová, and Milan Hájek Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague, Czech Republic 140 21, Czech Republic

(Received 18 April 2003; revised 17 December 2003; accepted for publication 17 December 2003; published 26 February 2004)

Simulation of human body (pelvis)

Phantoms for texture analysis of MR images. Long-term and multi-center study

Daniel Jirák,^{a)} Monika Dezortová, and Milan Hájek Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague, Czech Republic 140 21, Czech Republic

(Received 18 April 2003; revised 17 December 2003; accepted for publication 17 December 2003; published 26 February 2004)

Simulation of human body (pelvis)

Phantoms for texture analysis of MR images. Long-term and multi-center study

Daniel Jirák,^{a)} Monika Dezortová, and Milan Hájek Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague, Czech Republic 140 21, Czech Republic

(Received 18 April 2003; revised 17 December 2003; accepted for publication 17 December 2003; published 26 February 2004)

Simulation of human body (pelvis)

Phantoms for texture analysis of MR images. Long-term and multi-center study

Daniel Jirák,^{a)} Monika Dezortová, and Milan Hájek Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague, Czech Republic 140 21, Czech Republic

(Received 18 April 2003; revised 17 December 2003; accepted for publication 17 December 2003; published 26 February 2004)

Simulation of human body (pelvis)

next: MnCl₂

Conclusion

Conclusion

Challenge: can we "trust" the radiomic features extracted from MR images?

Conclusion

Challenge: can we "trust" the radiomic features extracted from MR images?

Preliminary results:
Conclusion

Challenge: can we "trust" the radiomic features extracted from MR images?

Preliminary results:

1. A workflow to test the reliability of the features, both for shortand long-term repeatability in the same experimental condition, has been established.

Conclusion

Challenge: can we "trust" the radiomic features extracted from MR images?

Preliminary results:

- 1. A workflow to test the reliability of the features, both for shortand long-term repeatability in the same experimental condition, has been established.
- 2. The unstable radiomic features (i.e. with dependency on image acquisition process) has been identified.

Conclusion

Challenge: can we "trust" the radiomic features extracted from MR images?

Preliminary results:

- 1. A workflow to test the reliability of the features, both for shortand long-term repeatability in the same experimental condition, has been established.
- 2. The unstable radiomic features (i.e. with dependency on image acquisition process) has been identified.
- 3. A dedicated phantom has been designed to simulate *in vivo* conditions for further radiomic analyses.

Linda Bianchini

Final aim: protocol for application in clinics

Final aim: protocol for application in clinics

1. Optimize and test the dedicated phantom

Final aim: protocol for application in clinics

1. Optimize and test the dedicated phantom

2. Study the dependency of the radiomic features on the MR sequence parameters

Final aim: protocol for application in clinics

1. Optimize and test the dedicated phantom

- 2. Study the dependency of the radiomic features on the MR sequence parameters
- 3. Test other sequences

Final aim: protocol for application in clinics

1. Optimize and test the dedicated phantom

- 2. Study the dependency of the radiomic features on the MR sequence parameters
- 3. Test other sequences
- 4. Test other scanners (manufacturers, higher fields)

Thank you!

BACKUP

GLCM and GLRLM

Linda Bianchini

GLCM and GLRLM

def. final features - GLCM25

$$autocorrelation = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} ij \mathbf{P}(i, j)$$

 $p_x(i) = \sum_{j=1}^{N_g} \mathbf{P}(i,j)$ be the marginal row probabilities, $p_y(i) = \sum_{i=1}^{N_g} \mathbf{P}(i,j)$ be the marginal column probabilities,

$$HXY = -\sum_{i} \sum_{j} p(i,j) \log (p(i,j))$$

$$sum \ average = \sum_{i=2}^{2N_g} [i\mathbf{P}_{x+y}(i)]$$
$$sum \ entropy = -\sum_{i=2}^{2N_g} \mathbf{P}_{x+y}(i) \log_2 [\mathbf{P}_{x+y}(i)]$$
$$sum \ variance = \sum_{i=2}^{2N_g} (i - SE)^2 \mathbf{P}_{x+y}(i)$$

 $IMC2 = \sqrt{1 - e^{-2(HXY2 - HXY)}}$

19th September 2018, Torino

def. final features - GLRLM25

2) High Gray-Level Run Emphasis (HGRE):

$$\text{HGRE} = \frac{1}{n_r} \sum_{i=1}^{M} \sum_{j=1}^{N} p(i, j) \cdot i^2 = \frac{1}{n_r} \sum_{i=1}^{M} p_g(i) \cdot i^2.$$

Image Biomarker Standardisation Initiative (IBSI)

Zwanenburg A, Leger S, Vallières M, Löck S. Image biomarker standardisation initiative. arXiv preprint arXiv:1612.07003

The image biomarker standardisation initiative (IBSI) is an independent international collaboration which works towards standardising the extraction of image biomarkers from acquired imaging for the purpose of high-throughput quantitative image analysis (radiomics). Lack of reproducibility and validation of high-throughput quantitative image analysis studies is considered to be a major challenge for the field^{31,38,84}. Part of this challenge lies in the scantiness of consensus-based guidelines and definitions for the process of translating acquired imaging into high-throughput image biomarkers. The IBSI therefore seeks to provide image biomarker nomenclature and definitions, benchmark data sets, and benchmark values to verify image processing and image biomarker calculations, as well as reporting guidelines, for high-throughput image analysis.

Image Biomarker Standardisation Initiative (IBSI)

Zwanenburg A, Leger S, Vallières M, Löck S. Image biomarker standardisation initiative. arXiv preprint arXiv:1612.07003

Aim

The image biomarker standardisation initiative (IBSI) is an independent international collaboration which works towards <u>standardising</u> the extraction of image biomarkers from acquired imaging for the purpose of high-throughput quantitative image analysis (radiomics). Lack of reproducibility and validation of high-throughput quantitative image analysis studies is considered to be a major challenge for the field^{31,38,84}. Part of this challenge lies in the scantiness of consensus-based guidelines and definitions for the process of translating acquired imaging into high-throughput image biomarkers. The IBSI therefore seeks to provide image biomarker nomenclature and definitions, benchmark data sets, and benchmark values to verify image processing and image biomarker calculations, as well as reporting guidelines, for high-throughput image analysis.

Image Biomarker Standardisation Initiative (IBSI)

Zwanenburg A, Leger S, Vallières M, Löck S. Image biomarker standardisation initiative. arXiv preprint arXiv:1612.07003

Aim

How?

The image biomarker standardisation initiative (IBSI) is an independent international collaboration which works towards <u>standardising</u> the extraction of image biomarkers from acquired imaging for the purpose of high-throughput quantitative image analysis (radiomics). Lack of reproducibility and validation of high-throughput quantitative image analysis studies is considered to be a major challenge for the field^{31,38,84}. Part of this challenge lies in the scantiness of consensus-based guidelines and definitions for the process of translating acquired imaging into high-throughput image biomarkers. The IBSI therefore seeks to provide image biomarker nomenclature and definitions, benchmark data sets, and benchmark values to verify image processing and image biomarker calculations, as well as reporting guidelines, for high-throughput image analysis.

Image Biomarker Standardisation Initiative (IBSI)

Zwanenburg A, Leger S, Vallières M, Löck S. Image biomarker standardisation initiative. arXiv preprint arXiv:1612.07003

Aim

How?

The image biomarker standardisation initiative (IBSI) is an independent international collaboration which works towards <u>standardising</u> the extraction of image biomarkers from acquired imaging for the purpose of high-throughput quantitative image analysis (radiomics). Lack of reproducibility and validation of high-throughput quantitative image analysis studies is considered to be a major challenge for the field^{31,38,84}. Part of this challenge lies in the scantiness of consensus-based guidelines and definitions for the process of translating acquired imaging into high-throughput image biomarkers. The IBSI therefore seeks to provide image biomarker nomenclature and definitions, benchmark data sets, and benchmark values to verify image processing and image biomarker calculations, as well as reporting guidelines, for high-throughput image analysis.

Reference for features definition

*from (4)

4th October 2018, Milano

