Backup

Search for top squark pair production in a final state with two leptons at LHC Run 2 with the ATLAS detector

> Sonia Carrà Supervisor: Tommaso Lari

First Year PhD Students Workshop October 20th, 2016 - Milano

S. Carrà

Outline

Analysis based on data collected by the ATLAS detector at the LHC. Goal: observation of supersymmetric particles and top squark production.

- LHC and ATLAS detector
- Motivation: beyond the Standard Model
- Supersymmetry and top squark
- Analysis strategy
- Results and conclusions

Result

LHC - Large Hadron Collider

Proton-proton collisions, number of events produced: N_{events} = $\sigma_{\rm process} \ge L$

The analysis uses the 2015 and 2016 data collected by ATLAS until July 2016. Integrated luminosity: 13.3 $\rm fb^{-1}$

S. Carra

ATLAS detector

General purpose experiment. Sub-detectors:

- inner tracker
- electromagnetic calorimeter
- hadronic calorimeter
- muon spectrometer

Objects reconstruction and identification using a sub-detectors combination.

Weakly interacting particles escaping the detector. Momentum conservation in the plane transverse to the beam \rightarrow missing transverse momentum due to the invisible particles.

 $p_{\rm T}^{\rm miss}$ defined as the negative vectorial sum of visible momenta.

Beyond the Standard Model

Standard Model: not a complete theory, many open questions:

- dark matter nature
- Higgs Boson mass divergency

Supersymmetry can solve these problems.

Largest contribution to the Higgs mass: top quark. In order to avoid the divergency: greatest correction from the top super-partner (top squark or stop).

Top squark

Stop associated production:

Final state:

- 2 leptons (e or μ)
- 2 b-jets

• E_{τ}^{miss} from ν and $\tilde{\chi}^{0}$

 ${ ilde \chi}^{ extsf{0}}$ is massive, neutral and weakly interacting ightarrow dark matter candidate Analysis designed to target a scenario with large \tilde{t} - $\tilde{\chi}^{\pm}$ mass difference

Standard Model Background

Many Standard Model processes with the same final state:

- tī
- Wt
- minor contribution from:
 - dibosons
 - Z + jets
 - fake leptons
 - $t\overline{t} + V$ and $t\overline{t} + H$

Kinematic cut providing a region with good signal/background ratio and performing a counting experiment

 \rightarrow "Cut and count" strategy

SUSY cross sections are very small compared to the SM ones. 13 TeV cross sections:

> $\sigma_{t\bar{t}} = 831.8 \text{ pb}$ $\sigma_{\tilde{t}\tilde{t},m(\tilde{t})=400\text{GeV}} = 18.5 \text{ pb}$

Hadronic m_{T2} variable

Key discriminanting variable is *stransverse* mass:

$$m_{\mathsf{T2}}(\chi) = \min_{(q_{\mathcal{T}}^{(1)} + q_{\mathcal{T}}^{(2)} = E_{\mathcal{T}}^{\mathsf{miss}})} \left[\max\left\{ m_{\mathcal{T}}^2(p_{\mathcal{T}}^{\mathsf{jet1}}, q_{\mathcal{T}}^{(1)}; \chi), m_{\mathcal{T}}^2(p_{\mathcal{T}}^{\mathsf{jet2}}, q_{\mathcal{T}}^{(2)}; \chi) \right\} \right]$$

Computed using the b-jets as visible momenta:

$$m_{T2}^{bb} = m_{T2}(b\text{-jet1, b-jet2, } E_T^{miss})$$

$$t \overline{t} : m_{T2}^{bb}$$
 end-point limited
by $\sqrt{m^2(t) - m^2(W)}$

signals : $m_{\text{T2}}^{\text{bb}}$ end-point limited by $\sqrt{m^2(\tilde{t}) - m^2(\tilde{\chi}^{\pm})}$

Signal Regions

Signal region (SR): a kinematic region with a good signal/background ratio. Two SR designed for different stop masses:

- SR_{low} optimized for $m(\tilde{t}) = 400 \text{ GeV}$
- $\mathsf{SR}_{\mathsf{high}}$ targetting $m(\tilde{t}) \geq 500 \; \mathsf{GeV}$

Variable	SRlow	SRhigh
<i>b</i> -jet multiplicity	2	2
$p_{r}^{ ep1}$ [GeV]	<120	<120
E ^{min,b∣} [GeV]	-	>180

Analysis

Resul

Background Fit

Monte Carlo simulations of the main backgrounds are simultaneously normalized to data in dedicated kinematic regions: control regions for $t\bar{t}$ and Wt Monte Carlo. Normalization extrapolated to the signal regions.

Variable	CRttbar	CRst
b-jet multiplicity	2	2
m ^{bb} _{T2} [GeV]	>120 & <160	<160
m ^{min} _{b1} [GeV]	<170	>170

Background Systematic Uncertainties

Two kind of systematic uncertainties affect the Monte Carlo simulation:

	SR	SR _{high}
Total background expectation	34.9	17.3
Total background systematic	50%	58%
Jet energy scale	-	-
Jet energy resolution	-	-
E ^{miss} modelling	1%	1%
Flavor tagging	-	-
MC statistical uncertainties	3%	5%
tīt and Wt theoretical uncertainties	30%	29%
<i>tī - Wt</i> interference	22%	27%
tt fitted normalization	1%	1%
Wt fitted normalization	26%	26%
Fake eptons	4%	6%
Luminosity	1%	1%

Main uncertainties: theoretical systematics

- theoretical systematics for tt
 and Wt, comparison between
 different Monte Carlo:
 - generator
 - parton shower
 - additional radiation
 - tt-Wt interference
- experimental systematic uncertainties:
 - jet energy scale and resolution
 - E^{miss} modelling
 - flavor tagging

	Results	
Results		

The table reports the observed data and the SM background. As example, the expected signal for two stop masses is also reported.

	SR_low	SR_{high}
Observed data	21	8
Total Standard Model	$\textbf{34.9} \pm \textbf{14.3}$	17.3 ± 7.5
$ \begin{array}{c} m(\tilde{t},\tilde{\chi}^{\pm},\tilde{\chi}^{0}) = (400,106,50) \text{GeV} \\ m(\tilde{t},\tilde{\chi}^{\pm},\tilde{\chi}^{0}) = (500,106,50) \text{GeV} \end{array} $	$\begin{array}{c} 27.4\pm3.4\\ 16.2\pm1.6\end{array}$	$\begin{array}{c} 12.4\pm2.5\\ 10.8\pm1.1 \end{array}$

No excess observed: data compatible with background estimation \rightarrow Limits have been placed on the supersymmetric particles masses

Results

Considering the $\tilde{t} - \tilde{\chi}^0$ mass plane with:

• $m(\tilde{\chi}^{\pm}) = 2m(\tilde{\chi}^{0})$

• $m(ilde{\chi}^{\pm}) = 106$ GeV

Exclusion limits at 95% confidence level Run 1 limits for the top squark search with 1 or 2 leptons in the final state are also reported. Analysi

Results

Conclusions

- An analysis for the search for the top squark with two leptons in the final state has been presented
- A scenario with large mass difference between t̃ and χ̃[±]₁ has been addressed
- The main discriminanting variable is the hadronic stransverse mass
- No excess has been observed
- The analysis provides an extension of the Run 1 limits on the τ̃-χ̃⁰ masses

Result presented at ICHEP: ATLAS-CONF-2016-076 on CDS

Backup

Preselection

- Trigger: [dileptonic-trigger and $p_{T}^{lep1} > 25 \text{ GeV } \& p_{T}^{lep2} > 20 \text{ GeV}$] or
 - [MET-trigger and $\rm E_T^{miss} > 200~GeV$ & $p_T^{\rm lep1} > 10~GeV$ & $p_T^{\rm lep2} > 10~GeV]$
- $m_{\ell\ell}$ > 20 GeV
- Z-veto $|m_{\ell\ell}-m_Z|>$ 20 GeV for SF events only
- $\bullet \ E_T^{miss} > 100 \ GeV$

b-tagging working point: 77 %

 m_{T2}^{bb} variable

$$m_{T2}^{bb} = m_{T2}(b-jet1, b-jet2, E_T^{miss})$$

$$m_{\text{T2}}(\chi) = \min_{(q_T^{(1)} + q_T^{(2)} = p_T^{\text{miss}})} \left[\max\left\{ m_T^2(p_T^{\text{jet1}}, q_T^{(1)}; \chi), m_T^2(p_T^{\text{jet2}}, q_T^{(2)}; \chi) \right\} \right]$$

See also:

C.G.Lester, D.J.Summers, *Measuring masses of semi-invisibly decaying particles pair produced at hadron colliders*, arXiv: hep-ph/9906349 [hep-ph]

A. Barr, C. Lester and P. Stephens, m(T2): The Truth behind the glamour, arXiv: hep-ph/0304226 [hep-ph]

Regions definition

Variable	CRttbar	CRst	VRttbar	VRst
m_{T2}^{bb} [GeV]	>120 & <160	<160	>160 & <220	>160 & <220
<i>b</i> -jet multiplicity	2	2	1	2
m ^{min} [GeV]	<170	>170	-	-
E^{miss}_{T} [GeV]	-	-	-	< 200

Variable	SRIow	SRhigh
<i>b</i> -jet multiplicity	2	2
т _{т2} [GeV]	>220	>220
p_{T}^{lep1} [GeV]	<120	<120
$E_{\rm T}^{\rm min, bl}$ [GeV]	-	>180

Background estimation

	C Rtt bar	CRst	VRttbar	VRst
Observed	849	512	545	48
Total Standard Model	849 ± 29	512 ± 22	530 ± 152	65.3 ± 18
Fitted $t\bar{t}$ Fitted Wt Diboson Z/γ^*+jets Fake leptons $t\bar{t} V$ $t\bar{t} H$	$767 \pm 43 \\ 54 \pm 28 \\ 0.43 \pm 0.13 \\ 0.73 \pm 0.72 \\ 21.1 \pm 5.6 \\ 4.71 \pm 0.31 \\ 1.00 \pm 0.15 \\ \end{array}$	$\begin{array}{c} 236 \pm 94 \\ 240 \pm 97 \\ 3.76 \pm 0.67 \\ 5.0 \pm 3.0 \\ 17.7 \pm 5.1 \\ 8.3 \pm 1.1 \\ 1.41 \pm 0.18 \end{array}$	$\begin{array}{c} 390\pm180\\ 100\pm51\\ 9.9\pm1.3\\ 5.0\pm3.6\\ 20.2\pm5.1\\ 4.72\pm0.49\\ 0.44\pm0.10\end{array}$	$\begin{array}{c} 23\pm17\\ 38\pm21\\ 0.20\pm0.16\\ 0.75\pm0.59\\ 2.0\pm1.6\\ 0.98\pm0.11\\ 0.30\pm0.04 \end{array}$
MC exp. Standard Model	848	460	520	57
MC exp. $t\overline{t}$ MC exp. Wt	777 42	239 185	400 77	23 30
	Scale factors		_	
	$\mu_{t\bar{t}}$	0.986 ± 0.056		

 $1.293\,\pm\,0.526$

 μ_{Wt}

	Backup

Signal regions

	SRlow	SRhigh
Observed	21	8
Total Standard Model	35 ± 14	17.3 ± 7.5
Fitted $t\overline{t}$	7.6 ± 3.4	3.3 ± 2.3
Fitted <i>Wt</i>	22 ± 15	11.7 ± 8.3
Diboson	0.44 ± 0.17	0.29 ± 0.15
$Z/\gamma*+jet$	0.15 ± 0.12	0.07 ± 0.05
Fakes and non-prompt	3.7 ± 1.5	1.5 ± 1.0
tīV	0.81 ± 0.10	0.42 ± 0.05
tī H	0.21 ± 0.03	0.09 ± 0.02
MC exp. Standard Mode	30	14.7
$\overline{MC exp. t\overline{t}}$	7.6	3.4
MC exp. Wt	17	9.0
$\overline{m(\tilde{t}, \tilde{\chi}^{\pm}, \tilde{\chi}^{0})} = (400, 106, 50) \text{ GeV}$	27.4 ± 3.4	12.4 ± 2.5
$m(\tilde{t},\tilde{\chi}^{\pm},\tilde{\chi}^{0})=(500,106,50)$ GeV	16.2 ± 1.6	10.8 ± 1.1

Run 1 Results

ATLAS Collaboration, Search for direct top-squark pair production in final states with two leptons in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, arXiv: 1403.4853 [hep-ex]

Model Indipendent Limits

Signal channel	$\langle\epsilon\sigma angle_{ m obs}^{95}[{ m fb}]$	$S^{95}_{ m obs}$	$S_{ m exp}^{95}$	CL _B
SRlow	1.18	15.7	$19.2^{+5.8}_{-4.2}$	0.23
SRhigh	0.60	8.0	$10.5^{+4.1}_{-2.8}$	0.18

Left to right: 95% CL upper limits on the visible cross section ($\langle \epsilon \sigma \rangle_{\rm obs}^{95}$) and on the number of signal events ($S_{\rm obs}^{95}$). The third column ($S_{\rm exp}^{95}$) shows the 95% CL upper limit on the number of signal events, given the expected number (and $\pm 1\sigma$ excursions on the expectation) of background events. The last column contains the CL_B value, i.e. the confidence level observed for the background-only hypothesis.

Analysi

Result

Future Plans

- The objetc of my PhD thesys is the search for sleptons direct production with 2 leptons in the final state.
- The sleptons ans stop into 2 letpons channels have a very similar final state, so they share various point of the analysis stategy.
- The analysis for the search of sleptons is now under development.