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Mechanotransduction refers to the processes through which
cells sense and respond to Physical stimuli by converting them to
biochemical signals that stimulate specific cellular responses.
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Nanostructured materials as tool to mimic ECM
Complexity and Structure
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Differentiation through morphological Interaction

Experiment Details

Schulte, C. et al.J. Nanobiotechnology
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Differentiation through morphological Interaction Nanostructured surfaces
induce differentiation

Experiment Details . Results without NGF!!
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Differentiation through morphological Interaction

Experiment Details

* Results
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Following the Mechano-Transductive Path

Phd Project Objective:

Study the step by step mechanical transmission of the external
morphological stimulus through the whole path:

From the interface to cell nucleus.

« The connection between mechanical properties of the cell and cytoskeletal
organization.

« How the cytoskeleton modulates then the nuclear Architecture.

« Witch are the adhesion condition (size, distribution and strength of the
adhesion spots) of the cell that triggers the cellular differentiation.
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@ Cell Nucleus
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AFM Indentation Measurement
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Following the Mechano-Transductive Path
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Du145 Cell Line
Treated with Vinflunine (VFL)
Anti-Cancer Drugs
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Following the Mechano-Transductive Path

Phd Project Objective:
Study the step by step mechanism through witch cells are capable to
convert an external and mechanical stimulus into a biological

reaction, tuning the cell’s fate.
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Following the Mechano-Transductive Path

Phd Project Objective:
Study the step by step mechanism through witch cells are capable to
convert an external and mechanical stimulus into a biological

reaction, tuning the cell’s fate.

@ Cytoskeleton

@ Cell Nucleus

@ Cell-Substrate Interface

» Witch are the adhesion condition of the cell that triggers the cellular
differentiation.
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The Surface cellular Brush
(Glycocalyx)
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The Surface cellular Brush
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The Surface cellular Brush
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Conclusions and future perspectives

* The stiffness and topography of the micro-environment influence the
distribution and the composition of the adhesion sites.

* The adhesion spots feedbacks on the force transmission, cytoskeletal
organization and mechanical properties of the cell.

* The variation of the cellular biophysical state impacts on the nuclear
architecture and mechano-sensitive transcription factors witch eventually
modulate the cell fate.

-

Further investigation on the role of the different glycocalyx
components in the growth of adhesion spots and relates it
with the confinement action of the nanostructured
surfaces.

Select different morphological properties of the ns-CP for a

complete characterization of the Integrine clustering and
the cellular response.

Matteo Chighizola
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surfaces.
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the cellular response.

Thank for your Attention!
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Control Measurement: Cutting the Glycocalyx

The Surface cellular Brush
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Nanotopography influence the Nuclear Architecture
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Differentiation through morphological Interaction
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AFM Indentation Measurement
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The general meaning of this concept is that the stiffness and the topography of the
environment influence the architecture and composition of adhesions sites (e.g. integrin
clustering) which feedbacks on the force transmission, cytoskeletal organization and
mechanical properties of the cell. The variation of the cellular biophysical state impacts on the

nuclear architecture and mechano-sensitive transcription factors which eventually modulate
the cell fate.




