Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

Physics and applications of Thomson/Compton back scattering

Camilla Curatolo

October 14, 2013

<ロト < 同ト < 回ト < 回ト

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

イロト イ伊ト イヨト イヨト

ъ

Thomson/Compton linear sources for the production of high brilliance X/γ rays.

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

Thomson/Compton linear sources for the production of high brilliance X/γ rays.

Introduction to Thomson and Compton back scattering.

イロト イ伊ト イヨト イヨト

ъ

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

Thomson/Compton linear sources for the production of high brilliance X/γ rays.

Introduction to Thomson and Compton back scattering.

> SPARCLAB (Pulsed and Amplified Source of Coherent Radiation LAB) ELI-NP (Extreme Light Infrastructure Nuclear Physics)

> > 《曰》 《卽》 《臣》 《臣》

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	•••••••••••••	000 0000 0000	0 00 000000	
Geometry				

Scattering between relativistic electrons and laser light

イロト イワト イヨト

1

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
		000 0000 0000	0 00 000000	

Geometry

イロト 不得 トイヨト 不良トー

1

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	000 0000 0000	0 00 000000	

Geometry

 ${\sf Classical} + {\sf Quantum \ effect}$

イロト 不得下 不良下 不良下

3

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	000	0	
	000	0000	000000	
Effect				

Considering electrons and laser perfectly counterpropagating:

$$\lambda_E = \frac{\lambda_L}{4\gamma^2}$$

イロト イボト イヨト イヨト

э

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	000	0	
	000	0000	00	
	000	0000	000000	
Effect				

Considering electrons and laser perfectly counterpropagating:

イロト イボト イヨト イヨト

ъ

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	000	0	
	000	0000	000000	
Effect				

Considering electrons and laser perfectly counterpropagating:

$$\lambda_E = \frac{\lambda_L}{4\gamma^2} + \frac{h}{mc\gamma}$$

イロト イボト イヨト イヨト

ъ

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 •00	000 0000 0000	0 00 000000	

Examples

γ	E
50	12 keV
50-60	12-20 keV
40-200	20-500 keV
60-300	20-500 keV
240	80 keV
500	2 MeV
	γ 50 50-60 40-200 60-300 240 500

イロト イロト イヨト イヨト

3

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
		000 0000 0000	0 00 000000	

Examples

イロト イポト イヨト イヨト

ъ

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

Examples

イロト イポト イヨト イヨト

ъ

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	•00	0	
	000	0000	00	
	000	0000	000000	
SDARCLAR				

SPARCLAB (Pulsed and Amplified Source of Coherent Radiation LAB) at National Laboratories Frascati (Rome)

<ロト < 同ト < 回ト < 回ト

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

SPARCLAB

イロト イボト イヨト イヨト

ъ

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

SPARCLAB

イロト イロト イヨト イヨト

ъ

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

Thomson Source

Thomson source

 $Electrons\ energy\\ E=30\ MeV$

Laser wavelenght $\lambda_L = 0.8 \, \mu m$

High brilliance X rays $\lambda_E = 6.2 \cdot 10^{-11} m$

Emitted radiation energy $E_f = 20 \ keV$

Number of Photons $N = 2 \cdot 10^9$

 $L = \frac{Luminosity}{\frac{N_L N_e}{2\pi(\sigma_x^2 + \frac{W_0^2}{4})}} f = 10^{38} \frac{1}{sm^2}$

<ロト < 同ト < 臣ト < 臣

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	000	0	
	000	0000	000000	
Thomson Source				

Classical Electrodynamics: from the electron orbits and the Lienard-Wiechert potential in the far zone, the radiation field for one electron is

$$\frac{d^2 W_i}{d\omega d\Omega} = \frac{e^2}{4\pi^2 c} \left| \int_{-\infty}^{+\infty} dt e^{i\omega t} \frac{\vec{n} \times \left[\vec{n} - \vec{\beta}(t') \times \dot{\vec{\beta}}(t')\right]}{(1 - \vec{n} \cdot \vec{\beta}(t'))^3} \right|^2 = \hbar \omega \frac{d^2 N_i}{d\omega d\Omega}$$

where $\vec{\beta}$ and $\dot{\vec{\beta}}$ are respectively the velocity and the acceleration of the incoming electron, \vec{n} the direction of the emitted radiation and $t' = t - \frac{1}{c}[\vec{n}r - \vec{r}(t')]$, with \vec{r} position of the electron, is the retarded time.

イロト イポト イヨト イヨト

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	000	0	
	000	0000	000000	
Thomson Source				

Classical Electrodynamics: from the electron orbits and the Lienard-Wiechert potential in the far zone, the radiation field for one electron is

$$\frac{d^2 W_i}{d\omega d\Omega} = \frac{e^2}{4\pi^2 c} \left| \int_{-\infty}^{+\infty} dt e^{i\omega t} \frac{\vec{n} \times \left[\vec{n} - \vec{\beta}(t') \times \dot{\vec{\beta}}(t')\right]}{(1 - \vec{n} \cdot \vec{\beta}(t'))^3} \right|^2 = \hbar \omega \frac{d^2 N_i}{d\omega d\Omega}$$

where $\vec{\beta}$ and $\dot{\vec{\beta}}$ are respectively the velocity and the acceleration of the incoming electron, \vec{n} the direction of the emitted radiation and $t' = t - \frac{1}{c}[\vec{n}r - \vec{r}(t')]$, with \vec{r} position of the electron, is the retarded time.

Summing over all of the electrons constituting the beam, we obtain the double differential spectrum $\frac{d^2N}{d\omega d\Omega}$.

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	000	0	
	000	0000	000000	
Thomson Source				

Classical Electrodynamics: from the electron orbits and the Lienard-Wiechert potential in the far zone, the radiation field for one electron is

$$\frac{d^2 W_i}{d\omega d\Omega} = \frac{e^2}{4\pi^2 c} \left| \int_{-\infty}^{+\infty} dt e^{i\omega t} \frac{\vec{n} \times \left[\vec{n} - \vec{\beta}(t') \times \dot{\vec{\beta}}(t')\right]}{(1 - \vec{n} \cdot \vec{\beta}(t'))^3} \right|^2 = \hbar \omega \frac{d^2 N_i}{d\omega d\Omega}$$

where $\vec{\beta}$ and $\dot{\vec{\beta}}$ are respectively the velocity and the acceleration of the incoming electron, \vec{n} the direction of the emitted radiation and $t' = t - \frac{1}{c}[\vec{n}r - \vec{r}(t')]$, with \vec{r} position of the electron, is the retarded time.

Summing over all of the electrons constituting the beam, we obtain the double differential spectrum $\frac{d^2N}{d\omega d\Omega}$.

Integrating over the solid angle and taking into account the characteristics of the beams we obtain the spectrum of the emitted radiation.

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	000	0	
	000	0000	00	
	000	0000	000000	
Thomson Source				

It is very important to predict and evaluate the qualities of the emitted radiation: number of photons, energy, bandwidth, brilliance...

・日ト (得)ト (臣)ト (臣)ト

-

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	000	0	
	000	0000	000000	
Thomson Source				

It is very important to predict and evaluate the qualities of the emitted radiation: number of photons, energy, bandwidth, brilliance...

These qualities depend in a critical way from the characteristics of the electron beam: we developed a code, to be implemented directly on the machine, based on a Genetic Algorithm in order to set the optimal parameters of the beam line.

イロト イポト イヨト イヨト

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	000	0	
	000	0000	00	
	000	0000	000000	
Thomson Source				

It is very important to predict and evaluate the qualities of the emitted radiation: number of photons, energy, bandwidth, brilliance...

These qualities depend in a critical way from the characteristics of the electron beam: we developed a code, to be implemented directly on the machine, based on a Genetic Algorithm in order to set the optimal parameters of the beam line.

Distincitive feature of this kind of sources is the strong correlation between the emission angle of the radiation and the energy of the emitted photons: from a broad total sprectrum it is possible to select, by using irides or collimators, a highly monochromatic radiation.

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	000	0	
Thomson Source	000	0000	000000	

The main applications foreseen for the Thomson technology in development at SPARCLAB are advanced imaging techniques for biomedical use.

イロト イボト イヨト イヨト

ъ

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	000	0	
	000	0000	00	
	000	0000	000000	
Thomson Source				

The main applications foreseen for the Thomson technology in development at SPARCLAB are advanced imaging techniques for biomedical use.

The Thomson source set to produce 20 keV X-rays is optimal for mammography:

High monochromaticity \rightarrow ratio between the signal and the dose absorbed by the patient is much higher than the one of Röntgen tubes.

Reduced dimension \rightarrow quality of the radiation similar to synchrotron light but the machine is much smaller, easy to install in a hospital.

.

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	000	0	
	000	0000	00	
	000	0000	000000	
Thomson Source				

The main applications foreseen for the Thomson technology in development at SPARCLAB are advanced imaging techniques for biomedical use.

The Thomson source set to produce 20 keV X-rays is optimal for mammography:

High monochromaticity \rightarrow ratio between the signal and the dose absorbed by the patient is much higher than the one of Röntgen tubes.

Different settings of the machinary allow to perform fundamental physics experiments: investigate the distribution of the electrons after the scattering.

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

Electrons distribution

Thomson at 150 MeV

V. Petrillo *et al.*, J. Appl. Phys. **114**, 043104 (2013).

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

Electrons distribution

Thomson at 150 MeV

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	000	0	
Electrons distribution	000	0000	000000	

Electron distribution P after the scattering.

Model: Chapman-Kolmogorov master equation for Markov processes

$$\frac{\partial P(E,t)}{\partial t} = \alpha \left(\int dE' W(E,E') P(E',t) - P(E,t) \right)$$

with

$$W = \frac{dN_{ph}}{dE}$$

V. Petrillo *et al.*, J. Appl. Phys. **114**, 043104 (2013).

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	000	0	
Electrons distribution	000	0000	000000	

Electron distribution P after the scattering.

Model: Chapman-Kolmogorov master equation for Markov processes

$$\frac{\partial P(E,t)}{\partial t} = \alpha \left(\int dE' W(E,E') P(E',t) - P(E,t) \right)$$

with

	ions
000 000 0 000 0000 00 000 0000 00	

Electrons distribution

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

Electrons distribution

V. Petrillo *et al.*, J. Appl. Phys. **114**, 043104 (2013).

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	• 00 000000	

Compton Source

ELI-NP (Extreme Light Infrastructure - Nuclear Physics) to be developed at Magurele (Romania)

Electrons energy $E = 360 - 720 \, MeV$ Laser wavelenght $\lambda_L = 0.5 \,\mu m$ High brilliance γ rays $\lambda_{F} = 10^{-13} m$ Emitted radiation energy $E_{f} = 1 - 20 MeV$ Number of Photons $N = 2 \cdot 10^5$ Luminosity $L = \frac{N_L N_e}{2\pi (\sigma^2 + \frac{w_0^2}{2\pi (\sigma^2 + \frac{w_0$

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	000	0	
	000	0000	000000	
Theory				

The high energy of the electron beam implies that the recoil of the electrons at the collision is not negligible: theoretical frame is QED.

イロト イボト イヨト イヨト

æ

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	000	0	
	000	0000	000000	
Theory				

The high energy of the electron beam implies that the recoil of the electrons at the collision is not negligible: theoretical frame is QED.

イロト イポト イヨト イヨト

Determine the differential Inverse Compton Cross section: Klein-Nishina + Lorentz transformations or pure QED calculation.

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	000	0	
	000	0000	•0	
	000	0000	000000	
Theory				

The high energy of the electron beam implies that the recoil of the electrons at the collision is not negligible: theoretical frame is QED.

Determine the differential Inverse Compton Cross section: Klein-Nishina + Lorentz transformations or pure QED calculation.

Extending to realistic beams and integrating over the solid angle we get the spectrum: the interesting radiation is concentrated in a very narrow angle $\frac{1}{\gamma}$ around the direction of the incoming electron beam.

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	000	0	
	000	0000	000000	
Theory				

The high energy of the electron beam implies that the recoil of the electrons at the collision is not negligible: theoretical frame is QED.

Determine the differential Inverse Compton Cross section: Klein-Nishina + Lorentz transformations or pure QED calculation.

Extending to realistic beams and integrating over the solid angle we get the spectrum: the interesting radiation is concentrated in a very narrow angle $\frac{1}{\gamma}$ around the direction of the incoming electron beam.

Codes: semi-analytical classical non-linear code TSST, semi-analytical quantum code Comp-cross and quantum code CAIN based on a Monte Carlo method.

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 0● 000000	

Theory

V. Petrillo et al., Nucl. Instrum. Methods Phys. Res. A 693, 109-116 (2012).

イロト イポト イヨト イヨト

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	○ ○○ ●○○○○○	

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	○ ○○ ○●○○○○	

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	○ ○○ ○○●○○○	

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000●00	

イロト イポト イヨト イヨト

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	○ ○○ ○○○○	

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 00000●	

イロト イポト イヨト イヨト

Camilla Curatolo: Physics and applications of Thomson/Compton back scattering

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

イロト イロト イヨト イヨト

≡ ∽へで

SPARCLAB

ELI-NP

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

Thomson at E = 30 MeV for 20 KeV X-rays just started operating Experimental datas to compare with theoretical previsions soon available

イロト イ伊ト イヨト イヨト

ъ

ELI-NP

SPARCLAB

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

イロト イポト イヨト イヨト

ELI-NP

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

4 D b 4 B b 4 B b 4 B

ELI-NP

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

< A >

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

\nearrow	Thomson at E = 30 MeV for 20 KeV X-rays just started operating	\rightarrow	Experimental datas to compare with theoretical previsions soon available
SPARCLAB	Thomson at E =150 MeV electrons distribution after scattering	\rightarrow	Important for future e-γ and γ-γ colliders
\searrow	Dual color experiment	\rightarrow	Pump and probe imaging
\rightarrow	Design and optimization of the accelerator	\rightarrow	Sparclab knowledge (electron Linac)
ELI-NP	Theoretical fundamental issues	\rightarrow	Rigorous method to calculate Inverse Compton cross section

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

- V. Petrillo et al., Nucl. Instrum. Methods Phys. Res. A 693, 109-116 (2012).
- A. Bacci *et al.*, J. App. Phys.l **113**, 194508 (2013).
- V. Petrillo *et al.*, J. Appl. Phys. **114**, 043104 (2013).
- J. D. Jackson. Classical Electrodynamics. John Wiley & Sons, Inc. (1998).

Thank you for your attention!

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

TABLE I. Summary of gamma-ray beam specifications.

Photon energy	1-20 MeV
Spectral density	>10 ⁴ ph/s eV
Bandwidth (rms)	≤0.3%
# photons per shot within FWHM bdw.	$2.0-4.0 \cdot 10^{5}$
# photons/s within FWHM bdw.	$\sim 10^9$
Source rms size	10-30 µm
Source rms divergence	25-250 µrad
Peak brilliance (Nph/s·mm ² mrad ² ·0.1%)	$10^{23} - 10^{24}$
Radiation pulse length (rms, ps)	0.7-1.5
Linear polarization	>95%
Macro rep. rate	100 Hz
# of pulses per macropulse	30-40
Pulse-to-pulse separation	15-20 ns

	E (MeV)	ε_{nx} (μ -rad)	$\sigma_{\delta}\left(\%\right)$	$\sigma_{\mathbf{x}}(\mu \mathbf{m})$	$\sigma_{\rm y}(\mu{\rm m})$
Low energy IP	360	0.4	0.08	14	14
High energy IP	520–720	0.5	0.05	10	10

<ロト < 回 ト < 回 ト < 三 ト < 三 ト つへの</p>

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

TABLE III. Electron beam parameters, at the C-band booster injection, for the S-band photo-injector.

	Reference beam (Comp. factor = 2.5)	Commissioning beam (On crest operation)	Commissioning beam (Comp. factor = 2.5)
Charge (pC)	250	25	25
Laser pulse length @ cathode, FWHM (ps)	8.5	3	3
Photocathode laser rms spot size (µm) (uniform transverse distribution)	250	150	150
Output energy (MeV)	79.7	132	79.6
Output RMS Energy spread (%)	1.75	0.02	0.63
Output normalized RMS projected emittance (mm-mrad)	0.4	0.2	0.2
Output RMS bunch length (μm)	280	280	112

Parameter	S-band	C-band
Structure type	Constant gradient, TW	Constant impedance, TW
Working frequency	2.856 GHz	5.712 GHz
Structure length	3 m	1.5 m
Nominal RF input power	40 MW	40 MW
Average accelerating	22 MV/m	35 MV/m
Quality factor	13 000	9000
Shunt impedance per unit length	55 MΩ/m	72 MΩ/m
Filling time	850 ns	230 ns

イロト イロト イヨト イヨト

≡ ∽へで

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

TABLE II. Laser beam parameters.

Pulse energy (J)	0.5
Wavelength (eV)	2.48
FWHM pulse length (ps)	2-4
Repetition rate (Hz)	100
M ²	<u>≤</u> 1.2
Focal spot size w ₀ (µm)	>28
Bandwidth (rms)	0.05%
Pointing stability (µrad)	1
Sinchronization to an ext. clock	<1 ps
Pulse energy stability	1%

000 000 0 000 0000 00 000 0000 0000	Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
		000 000 000	000 0000 0000	0 00 000000	

FIG. 3. Energy spread versus bunch length for different RF frequencies: red solid line for the S-band, blue dashed line for C-band, and dashed and dotted black line for X-band. The ELI-NP energy spread maximum threshold is 0.1% and 0.05%; safe values are reported in black dashed lines.

イロト 不得下 イヨト イヨト

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

Table 1

Peak-Q energies and dose efficiencies for monochromatic beams, Thomson scattering source and mammographic X-ray tube.

Detail thickness (mm)	Monochromat	Monochromatic beams		X-ray tube
	Peak energy (keV)	Q	Q	Q
1 2 5 10	20.3 20.4 20.5 20.7	0.146 0.578 3.51 13.41	0.137 0.547 3.34 12.75	0.087 0.351 2.17 8.22

イロト イポト イヨト イヨト

E nac

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	000 0000 0000	0 00 000000	

	Luce di sincrotrone
Caratteristica	Euce ut sincreti 8 - 35
Intervallo di energia (keV)	16 - 35
Intervallo energia per esame(keV)	$\Delta E/E = 2 \times 10^{-3}$
Risoluzione energetica	$2 \times 10^8 / mm^{-2} s^{-1}$ (2 GeV,300 mA)
Flusso di fotoni (15 keV)	2 × 10 / mm = 120 × 4
Dimensione del fascio (mm)	$\approx 30 (26.5 \text{ m nel vuoto})$
Distanza sorgente-campione (m)	

Tabella 4.1: Caratteristiche del fascio di raggi X prodotto dal sincrotrone

	Luce Thomson
Caratteristica	10 - 150
Intervallo di energia (keV)	16 - 35
Intervallo di energia per esame(keV)	$\Delta E / E = 4 \times 10^{-2}$
Bisoluzione energetica	$\Delta E/E = 4 \times 10^{6}$
Flusso di fotoni a 15 keV	7×10^{-7} mm $^{-30} \times 30^{-12}$
Dimensione del fascio (mm)	$6 \times 6 - 12 \times 12 = 30 \times 60$
Distanza sorgente-campione (m)	1-2 0

Tabella 4.2: Caratteristiche del fascio di raggi X prodotto dalla sorgente Thomson (simulazione)

《口》《圖》《臣》《臣》

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

《曰》 《問》 《臣》 《臣》

-

SPARCLAB: S-band Gun operating at 120 MV/m

 $^+$ 2 S-band TW accelerating cavities, each 3 *m* long operating at 22 *MV/m*

イロト イボト イヨト イヨト

1

4

6

Z (m)

8

A. Bacci *et al.*, J. App. Phys.l **113**, 194508 (2013).

ъ

イロト イボト イヨト イヨト

Same design proposed for ELI-NP.

2

0

0

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

<ロト < 同ト < 巨ト < 巨ト

ъ

Study: C-band Gun operating at $170 \ MV/m$

 $^+$ 3 C-band TW accelerating cavities, each 1.5 *m* long operating at 35 MV/m

No velocity bunching

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

Study: C-band Gun operating at 170 MV/m

3 C-band TW accelerating cavities, each 1.5 m long operating at 35 MV/m

No velocity bunching

イロト イポト イヨト イヨト

1

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	000	0	
	000	0000	00	
	000	0000	000000	

Study: C-band Gun operating at 170 MV/m

3 C-band TW accelerating cavities, each 1.5 m long operating at 35 MV/m

No velocity bunching

イロト イポト イヨト イヨト

1

Next SPARCLAB upgrade.

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

32

Camilla Curatolo: Physics and applications of Thomson/Compton back scattering

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

$$|\Psi_{t_1}\rangle = \iint \frac{d^3q'}{q'^0} \frac{d^3k'}{k'^0} e^{\frac{i}{\hbar}(q'^0 + k'^0)ct_1} \sum_{r'\lambda'=1}^2 \Psi_{1e}(q', r') \Psi_{1\gamma}(k', \lambda') \hat{b}^{r'\dagger}(q') \hat{c}^{\lambda'\dagger}(k') |0\rangle$$

イロト イボト イヨト イヨト

1

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

$$|\Psi_{t_1}\rangle = \iint \frac{d^3q'}{q'^0} \frac{d^3k'}{k'^0} e^{\frac{i}{\hbar}(q'^0 + k'^0)ct_1} \sum_{r'\lambda'=1}^2 \Psi_{1e}(q', r') \Psi_{1\gamma}(k', \lambda') \hat{b}^{r'\dagger}(q') \hat{c}^{\lambda'\dagger}(k') |0\rangle$$

イロト イボト イヨト イヨト

æ

Transition from $(\vec{q_i}, \vec{k_i})$ at t_1 to $(\vec{q_f}, \vec{k_f})$ at t_2 with $\Psi_{1e}(q_f, r)\Psi_{1\gamma}(k_f, \lambda) \simeq 0$

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

$$|\Psi_{t_1}\rangle = \iint \frac{d^3q'}{q'^0} \frac{d^3k'}{k'^0} e^{\frac{i}{\hbar}(q'^0 + k'^0)ct_1} \sum_{r'\lambda'=1}^2 \Psi_{1e}(q', r') \Psi_{1\gamma}(k', \lambda') \hat{b}^{r'\dagger}(q') \hat{c}^{\lambda'\dagger}(k') |0\rangle$$

Transition from $(\vec{q_i}, \vec{k_i})$ at t_1 to $(\vec{q_f}, \vec{k_f})$ at t_2 with $\Psi_{1e}(q_f, r)\Psi_{1\gamma}(k_f, \lambda) \simeq 0$

$$\hat{E}^{r\lambda}(M) = \iint_{M} \frac{d^{3}q}{q^{0}} \frac{d^{3}k}{k^{0}} \hat{b}^{r\dagger}(\vec{q}) \hat{c}^{\dagger}_{\lambda}(\vec{k}) |0\rangle \langle 0| \hat{c}_{\lambda}(\vec{k}) \hat{b}^{r}(\vec{q}) \\ \sum_{r\lambda} \hat{E}^{r\lambda}(\mathbb{R}^{6}) = \hat{P}_{e,\gamma}$$

イロト イボト イヨト イヨト

æ

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

$$|\Psi_{t_1}\rangle = \iint \frac{d^3q'}{q'^0} \frac{d^3k'}{k'^0} e^{\frac{i}{\hbar}(q'^0 + k'^0)ct_1} \sum_{r'\lambda'=1}^2 \Psi_{1e}(q', r') \Psi_{1\gamma}(k', \lambda') \hat{b}^{r'\dagger}(q') \hat{c}^{\lambda'\dagger}(k') |0\rangle$$

Transition from $(\vec{q_i}, \vec{k_i})$ at t_1 to $(\vec{q_f}, \vec{k_f})$ at t_2 with $\Psi_{1e}(q_f, r)\Psi_{1\gamma}(k_f, \lambda) \simeq 0$

$$\hat{E}^{r\lambda}(M) = \iint_{M} rac{d^{3}q}{q^{0}} rac{d^{3}k}{k^{0}} \hat{b}^{r\dagger}(\vec{q}) \hat{c}^{\dagger}_{\lambda}(\vec{k}) |0
angle \langle 0| \hat{c}_{\lambda}(\vec{k}) \hat{b}^{r}(\vec{q})$$

$$\sum_{r\lambda} \hat{E}^{r\lambda}(\mathbb{R}^{6}) = \hat{P}_{e,\gamma}$$

To calculate the probability $||\hat{E}^{r\lambda}(M)\hat{U}^{inter}(t_2,t_1)\Psi_{t_1}||^2$ we are interested in

$$\Pi^{r\lambda}(\vec{q},\vec{k};t_{2},t_{1}) = |\langle \Phi_{t_{2}}|\hat{U}^{inter}(t_{2},t_{1})|\Psi_{t_{1}}\rangle|^{2} \frac{1}{k^{0}q^{0}}$$

《曰》 《問》 《臣》 《臣》

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

$$|\Psi_{t_1}\rangle = \iint \frac{d^3q'}{q'^0} \frac{d^3k'}{k'^0} e^{\frac{i}{\hbar}(q'^0 + k'^0)ct_1} \sum_{r'\lambda'=1}^2 \Psi_{1e}(q', r') \Psi_{1\gamma}(k', \lambda') \hat{b}^{r'\dagger}(q') \hat{c}^{\lambda'\dagger}(k') |0\rangle$$

Transition from $(\vec{q_i}, \vec{k_i})$ at t_1 to $(\vec{q_f}, \vec{k_f})$ at t_2 with $\Psi_{1e}(q_f, r)\Psi_{1\gamma}(k_f, \lambda) \simeq 0$

$$\hat{E}^{r\lambda}(M) = \iint_{M} rac{d^{3}q}{q^{0}} rac{d^{3}k}{k^{0}} \hat{b}^{r\dagger}(\vec{q}) \hat{c}^{\dagger}_{\lambda}(\vec{k}) |0
angle \langle 0| \hat{c}_{\lambda}(\vec{k}) \hat{b}^{r}(\vec{q})
angle$$
 $\sum_{r\lambda} \hat{E}^{r\lambda}(\mathbb{R}^{6}) = \hat{P}_{e,\gamma}$

To calculate the probability $||\hat{E}^{r\lambda}(M)\hat{U}^{inter}(t_2,t_1)\Psi_{t_1}||^2$ we are interested in

$$\Pi^{r\lambda}(\vec{q},\vec{k};t_{2},t_{1}) = |\langle \Phi_{t_{2}}|\hat{U}^{inter}(t_{2},t_{1})|\Psi_{t_{1}}\rangle|^{2}\frac{1}{k^{0}q^{0}}$$
$$\langle \Phi_{t_{2}}|T\left(e^{-\frac{ie}{\hbar c}\int_{ct_{1}}^{ct_{2}}dx^{0}\int_{\mathbb{R}^{3}}d^{3}x:\hat{\Psi}(x)\gamma^{\mu}\hat{\Psi}(x)\hat{A}_{\mu}(x):\right)|\Psi_{t_{1}}\rangle$$

《曰》 《問》 《臣》 《臣》

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	000	0	
	000	00000	000000	

$$\begin{split} \langle \Phi_{t_2} | &- i \Big(\frac{e}{\hbar c} \Big)^2 \iint_{ct_1}^{ct_2} dx_1^0 dx_2^0 \iint_{\mathbb{R}^3} d^3 x_1 d^3 x_2 \widehat{\Psi}^{(-)}(x_2) \gamma^{\mu_2} \\ &\cdot \Big(\hat{A}_{\mu_2}^{(-)}(x_2) S_F(x_2 - x_1) \hat{A}_{\mu_1}^{(+)}(x_1) + \hat{A}_{\mu_1}^{(-)}(x_1) S_F(x_2 - x_1) \hat{A}_{\mu_2}^{(+)}(x_2) \Big) \gamma^{\mu_1} \hat{\Psi}^{(+)}(x_1) | \Psi_{t_1} \rangle \end{split}$$

イロト イロト イヨト イヨト

≡ ∽へで
Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	000	0	
	000	00000	000000	

$$\begin{split} \langle \Phi_{t_2} | &- i \left(\frac{e}{\hbar c}\right)^2 \iint_{ct_1}^{ct_2} dx_1^0 dx_2^0 \iint_{\mathbb{R}^3} d^3 x_1 d^3 x_2 \widehat{\Psi}^{(-)}(x_2) \gamma^{\mu_2} \\ &\cdot \left(\hat{A}_{\mu_2}^{(-)}(x_2) S_F(x_2 - x_1) \hat{A}_{\mu_1}^{(+)}(x_1) + \hat{A}_{\mu_1}^{(-)}(x_1) S_F(x_2 - x_1) \hat{A}_{\mu_2}^{(+)}(x_2) \right) \gamma^{\mu_1} \hat{\Psi}^{(+)}(x_1) | \Psi_{t_1} \rangle \\ &= - \frac{ie^2 m_e}{2} \sum_{r'\lambda'} \iint_{q'0} \frac{d^3 q'}{q'^0} \frac{d^3 k'}{k'^0} e^{\frac{i}{\hbar} (q'^0 + k'^0) ct_1} \\ &\quad \cdot \iint_{ct_1}^{ct_2} dx_1^0 dx_2^0 \iint_{\mathbb{R}^3} d^3 x_1 d^3 x_2 \frac{e^{\frac{i}{\hbar} q_f x_2}}{(2\pi\hbar)^{\frac{3}{2}}} \overline{v}^{r_f}(\vec{q_f}) \gamma^{\mu_2} \\ &\quad \cdot \left[\frac{e^{\frac{i}{\hbar} k_f x_2}}{(2\pi\hbar)^{\frac{3}{2}}} e_{\lambda_f,\mu_2}(\vec{k_f}) S_F(x_2 - x_1) \frac{e^{\frac{i}{\hbar} k' x_1}}{(2\pi\hbar)^{\frac{3}{2}}} e_{\lambda',\mu_1}(\vec{k'}) \\ &\quad + \frac{e^{\frac{i}{\hbar} k_f x_1}}{(2\pi\hbar)^{\frac{3}{2}}} e_{\lambda_f,\mu_1}(\vec{k_f}) S_F(x_2 - x_1) \frac{e^{-\frac{i}{\hbar} k' x_2}}{(2\pi\hbar)^{\frac{3}{2}}} e_{\lambda',\mu_2}(\vec{k'}) \right] \\ &\quad \cdot \gamma^{\mu_1} v'(\vec{q'}) \frac{e^{-\frac{i}{\hbar} q' x_1}}{(2\pi\hbar)^{\frac{3}{2}}} \Psi_{1e}(\vec{q'},r') \Psi_{1\gamma}(\vec{k'},\lambda') \end{split}$$

E 900

イロト イロト イヨト イヨト

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

イロト イポト イヨト イヨト

1

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

Since

$$S_F(x) = \lim_{\epsilon \to 0^+} \int dk^0 d^3 k \frac{e^{-ikx}}{(2\pi)^4} \frac{k\gamma + \frac{m_e c}{\hbar}I}{k^2 - \frac{m_e^2 c^2}{\hbar^2} + i\epsilon}$$

we integrate on k and develop the calculation of the integral on k^0 utilizing the complex analysis methods.

《曰》 《問》 《臣》 《臣》

-

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

Since

$$S_F(x) = \lim_{\epsilon \to 0^+} \int dk^0 d^3 k \frac{e^{-ikx}}{(2\pi)^4} \frac{k\gamma + \frac{m_e c}{\hbar}I}{k^2 - \frac{m_e^2 c^2}{\hbar^2} + i\epsilon}$$

we integrate on k and develop the calculation of the integral on k^0 utilizing the complex analysis methods.

We set the initial wave functions to be peaked around initial momentum $\vec{q_i}$ for the electron and $\vec{k_i}$ for the photon, so that the initial momentum of the particles is in good approximation $\vec{q_i}$ and $\vec{k_i}$.

イロト イポト イヨト イヨト

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

Since

$$S_F(x) = \lim_{\epsilon \to 0^+} \int dk^0 d^3 k \frac{e^{-ikx}}{(2\pi)^4} \frac{k\gamma + \frac{m_e c}{\hbar}I}{k^2 - \frac{m_e^2 c^2}{\hbar^2} + i\epsilon}$$

we integrate on k and develop the calculation of the integral on k^0 utilizing the complex analysis methods.

We set the initial wave functions to be peaked around initial momentum $\vec{q_i}$ for the electron and $\vec{k_i}$ for the photon, so that the initial momentum of the particles is in good approximation $\vec{q_i}$ and $\vec{k_i}$.

The wave function of a single particle describes the momentum of the particle through its modulus and is related to the position through the phase. The position of the photon is hardly determined, so it is necessary to take an average over the infinite possible choices of \vec{x}_0 in a macroscopic space region ω , inside the bunch, symmetric around the origin, where the density of the photons is constant.

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

$$\begin{split} & P(\lambda_{i},\lambda_{f},\vec{k_{f}}\in d\Omega(\theta,\phi)) = \frac{d\Omega(t_{2}-t_{1})c}{V}\frac{e^{4}m_{e}^{2}}{(4\pi\hbar)^{2}}\frac{1}{|\vec{k}_{i}|}\frac{1}{\sqrt{m_{e}^{2}c^{2}+|\vec{q}_{i}|^{2}}} \\ & \cdot \frac{1}{\sqrt{m_{e}^{2}c^{2}+|\vec{q}_{i}+\vec{k}_{i}-\vec{k_{f}}(\theta,\phi)|^{2}}}\frac{|\vec{k}_{f}(\theta)|\left(\sqrt{m_{e}^{2}c^{2}+|\vec{q}_{i}|^{2}}+|\vec{k}_{i}|-|\vec{k}_{f}(\theta)|\right)}{\sqrt{m_{e}^{2}c^{2}+|\vec{q}_{i}|^{2}}+k_{i}-|\vec{q}_{i}+\vec{k}_{i}|\cos\theta} \\ & \cdot Tr_{\mathbb{C}^{4}}\Big\{\Big[\Big(\note_{\lambda_{f}}(\vec{k}_{f}(\theta,\phi))\note_{\lambda_{i}}(\vec{k}_{i})+\note_{\lambda_{f}}(\vec{k}_{f}(\theta,\phi))q_{i}\cdot e_{\lambda_{i}}(\vec{k}_{i})\Big)\frac{\hbar}{2q_{i}\cdot k_{i}} \\ & +\Big(\note_{\lambda_{i}}(\vec{k}_{i})(-\note_{f})\note_{\lambda_{f}}(\vec{k}_{f}(\theta,\phi))+\note_{\lambda_{i}}(\vec{k}_{i})q_{i}\cdot e_{\lambda_{f}}(\vec{k}_{f}(\theta,\phi))\Big)\frac{\hbar}{-2q_{i}\cdot k_{f}(\theta,\phi)}\Big] \\ & \cdot \frac{1}{2}\Big(\frac{m_{e}cl+\note_{i}}{2m_{e}c}\Big)\cdot\Big[\Big(\note_{\lambda_{i}}(\vec{k}_{i})\note_{\lambda_{f}}(\vec{k}_{f}(\theta,\phi))+\note_{\lambda_{f}}(\vec{k}_{f}(\theta,\phi))q_{i}\cdot e_{\lambda_{i}}(\vec{k}_{i})\Big)\frac{\hbar}{-2q_{i}\cdot k_{f}(\theta,\phi)}\Big] \\ & +\Big(\note_{\lambda_{f}}(\vec{k}_{f}(\theta,\phi))(-\note_{f})\note_{\lambda_{i}}(\vec{k}_{i})+\note_{\lambda_{i}}(\vec{k}_{i})q_{i}\cdot e_{\lambda_{f}}(\vec{k}_{f}(\theta,\phi))\Big)\frac{\hbar}{-2q_{i}\cdot k_{f}(\theta,\phi)}\Big] \\ & \cdot \frac{m_{e}cl+\gamma(\vec{q}_{i}+\vec{k}_{i}-\vec{k}_{f}(\theta,\phi))}{2m_{e}c}\Big\}\Big\}$$

・ロト ・ 個 ト ・ 臣 ト ・ 臣 ト

1

where $\not a = a \cdot \gamma$

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

$$\begin{split} P(\lambda_{i},\lambda_{f},\vec{k_{f}}\in d\Omega(\theta,\phi)) &= \frac{d\Omega(t_{2}-t_{1})c}{V}\frac{e^{4}m_{e}^{2}}{(4\pi\hbar)^{2}}\frac{1}{|\vec{k}_{i}|}\frac{1}{\sqrt{m_{e}^{2}c^{2}+|\vec{q}_{i}|^{2}}} \\ &\cdot \frac{1}{\sqrt{m_{e}^{2}c^{2}+|\vec{q}_{i}+\vec{k}_{i}-\vec{k_{f}}(\theta,\phi)|^{2}}}\frac{|\vec{k}_{f}(\theta)|\left(\sqrt{m_{e}^{2}c^{2}+|\vec{q}_{i}|^{2}}+|\vec{k}_{i}|-|\vec{k}_{f}(\theta)|\right)}{\sqrt{m_{e}^{2}c^{2}+|\vec{q}_{i}|^{2}}+k_{i}-|\vec{q}_{i}+\vec{k}_{i}|\cos\theta}} \\ \cdot Tr_{\mathbb{C}^{4}}\Big\{\Big[\Big(\not_{\lambda_{f}}(\vec{k}_{f}(\theta,\phi))\not_{i}\not_{\lambda_{i}}(\vec{k}_{i})+\not_{\lambda_{f}}(\vec{k}_{f}(\theta,\phi))q_{i}\cdot e_{\lambda_{i}}(\vec{k}_{i})\Big)\frac{\hbar}{2q_{i}\cdot k_{i}}} \\ &+ \Big(\not_{\lambda_{i}}(\vec{k}_{i})(-\vec{k}_{f})\not_{\lambda_{f}}(\vec{k}_{f}(\theta,\phi))+\not_{\lambda_{i}}(\vec{k}_{i})q_{i}\cdot e_{\lambda_{f}}(\vec{k}_{f}(\theta,\phi))\Big)\frac{\hbar}{-2q_{i}\cdot k_{f}(\theta,\phi)}\Big] \\ &\cdot \frac{1}{2}\Big(\frac{m_{e}cl+\not_{q}}{2m_{e}c}\Big)\cdot\Big[\Big(\not_{\lambda_{i}}(\vec{k}_{i})\not_{i}\not_{\lambda_{f}}(\vec{k}_{i}(\theta,\phi))+\not_{\lambda_{f}}(\vec{k}_{f}(\theta,\phi))q_{i}\cdot e_{\lambda_{i}}(\vec{k}_{i})\Big)\frac{\hbar}{-2q_{i}\cdot k_{f}(\theta,\phi)}\Big] \\ &+ \Big(\not_{\lambda_{f}}(\vec{k}_{f}(\theta,\phi))(-\vec{k}_{f})\not_{\lambda_{i}}(\vec{k}_{i})+\not_{\lambda_{i}}(\vec{k}_{i})q_{i}\cdot e_{\lambda_{f}}(\vec{k}_{f}(\theta,\phi))\Big)\frac{\hbar}{-2q_{i}\cdot k_{f}(\theta,\phi)}\Big] \\ &\cdot \frac{m_{e}cl+\gamma(\vec{q}_{i}+\vec{k}_{i}-\vec{k}_{f}(\theta,\phi))}{2m_{e}c}\Big\}\Big\}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへつ

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000	000	0	
	000	0000	000000	

$$\begin{split} \sigma_{\lambda_{i},\lambda_{f}}(\theta,\phi) &= \frac{e^{4}m_{e}^{2}}{(4\pi\hbar)^{2}}\frac{1}{|\vec{k}_{i}|}\frac{1}{\sqrt{m_{e}^{2}c^{2}+|\vec{q}_{i}|^{2}}} \\ &\cdot \frac{1}{\sqrt{m_{e}^{2}c^{2}+|\vec{q}_{i}+\vec{k}_{i}-\vec{k}_{f}(\theta,\phi)|^{2}}}\frac{|\vec{k}_{f}(\theta)|\left(\sqrt{m_{e}^{2}c^{2}+|\vec{q}_{i}|^{2}}+|\vec{k}_{i}|-|\vec{k}_{f}(\theta)|\right)}{\sqrt{m_{e}^{2}c^{2}+|\vec{q}_{i}|^{2}}+k_{i}-|\vec{q}_{i}+\vec{k}_{i}|\cos\theta} \\ &\cdot Tr_{\mathbb{C}^{4}}\left\{\left[\left(\not{e}_{\lambda_{f}}(\vec{k}_{f}(\theta,\phi))\not{k}_{i}\not{e}_{\lambda_{i}}(\vec{k}_{i})+\not{e}_{\lambda_{f}}(\vec{k}_{f}(\theta,\phi))q_{i}\cdot e_{\lambda_{i}}(\vec{k}_{i})\right)\frac{\hbar}{2q_{i}\cdot k_{i}} \\ &+\left(\not{e}_{\lambda_{i}}(\vec{k}_{i})(-\vec{k}_{f})\not{e}_{\lambda_{f}}(\vec{k}_{f}(\theta,\phi))+\not{e}_{\lambda_{i}}(\vec{k}_{i})q_{i}\cdot e_{\lambda_{f}}(\vec{k}_{f}(\theta,\phi))\right)\frac{\hbar}{-2q_{i}\cdot k_{f}(\theta,\phi)}\right] \\ &\cdot \frac{1}{2}\left(\frac{m_{e}cl+\not{q}_{i}}{2m_{e}c}\right)\cdot\left[\left(\not{e}_{\lambda_{i}}(\vec{k}_{i})\not{k}_{i}\not{e}_{\lambda_{f}}(\vec{k}_{f}(\theta,\phi))+\not{e}_{\lambda_{f}}(\vec{k}_{f}(\theta,\phi))q_{i}\cdot e_{\lambda_{i}}(\vec{k}_{i})\right)\frac{\hbar}{-2q_{i}\cdot k_{f}(\theta,\phi)}\right] \\ &+\left(\not{e}_{\lambda_{f}}(\vec{k}_{f}(\theta,\phi))(-\vec{k}_{f})\not{e}_{\lambda_{i}}(\vec{k}_{i})+\not{e}_{\lambda_{i}}(\vec{k}_{i})q_{i}\cdot e_{\lambda_{f}}(\vec{k}_{f}(\theta,\phi))\right)\frac{\hbar}{-2q_{i}\cdot k_{f}(\theta,\phi)}\right] \\ &\cdot \frac{m_{e}cl+\gamma(\vec{q}_{i}+\vec{k}_{i}-\vec{k}_{f}(\theta,\phi))}{2m_{e}c}\right\}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへつ

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

If $\vec{q}_i = 0$ we get the Klein and Nishina formula:

$$\begin{aligned} (\sigma_{\lambda_i,\lambda_f}(\theta,\phi))_{\vec{q}_i=0} &= \frac{1}{4} \Big(\frac{e^2}{4\pi m_e c^2}\Big)^2 \Big(\frac{m_e c}{m_e c + |\vec{k}_i|(1-\cos\theta)}\Big)^2 \\ &\cdot \Big[4(\vec{e}_{\lambda_f}\cdot\vec{e}_{\lambda_i})^2 + \frac{|\vec{k}_i|^2(1-\cos\theta)^2}{m_e c(m_e c + |\vec{k}_i|(1-\cos\theta))}\Big] \end{aligned}$$

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

If $\vec{q}_i = 0$ we get the Klein and Nishina formula:

$$\begin{aligned} (\sigma_{\lambda_i,\lambda_f}(\theta,\phi))_{\vec{q}_i=0} &= \frac{1}{4} \Big(\frac{e^2}{4\pi m_e c^2}\Big)^2 \Big(\frac{m_e c}{m_e c + |\vec{k}_i|(1-\cos\theta)}\Big)^2 \\ &\cdot \Big[4(\vec{e}_{\lambda_f}\cdot\vec{e}_{\lambda_i})^2 + \frac{|\vec{k}_i|^2(1-\cos\theta)^2}{m_e c(m_e c + |\vec{k}_i|(1-\cos\theta))}\Big] \end{aligned}$$

Since $|\vec{k_i}| \ll m_e c$, for not polarized photon beam and not observed polarization of the scattered photons:

$$(\sigma_{\lambda_i,\lambda_f}(\theta,\phi))_{\vec{q}_i=0} = \left(\frac{e^2}{4\pi m_e c^2}\right)^2 \frac{1}{2} (1+\cos^2\theta) = r_0^2 \frac{(1+\cos^2\theta)}{2}$$

イロト イボト イヨト イヨト

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

In the general case of $\vec{q}_i \neq 0$ the result is much more complicated:

 $\sigma_{\lambda_i,\lambda_f}(\theta,\phi) = A \cdot B$

イロト イボト イヨト イヨト

10

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

In the general case of $\vec{q}_i \neq 0$ the result is much more complicated:

$$\sigma_{\lambda_i,\lambda_f}(\theta,\phi) = \mathbf{A} \cdot \mathbf{B}$$

where

$$A = \left(\frac{e^2}{4\pi m_e c^2}\right)^2 \frac{m_e c}{\sqrt{m_e^2 c^2 + |\vec{q}_i|^2}} \frac{m_e c}{\sqrt{m_e^2 c^2 + |\vec{q}_i + \vec{k}_i - \vec{k_f}(\theta, \phi)|^2}} \\ \cdot \frac{|\vec{k}_f(\theta)| \left(\sqrt{m_e^2 c^2 + |\vec{q}_i|^2} + |\vec{k}_i| - |\vec{k}_f(\theta)|\right)}{\sqrt{m_e^2 c^2 + |\vec{q}_i|^2} + |\vec{k}_i| - |\vec{q}_i + \vec{k}_i| \cos \theta}$$

イロト イポト イヨト イヨト

1

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

$$\begin{split} B &= \frac{1}{2} \Big\{ k_i \cdot k_f \Big[\frac{\vec{q}_i \cdot \vec{e}_{\lambda_f} \cdot \vec{e}_{\lambda_f} \cdot \vec{k}_i - \vec{q}_i \cdot \vec{e}_{\lambda_i} \cdot \vec{e}_{\lambda_i} \cdot \vec{k}_f}{q_i \cdot k_i} + \frac{1}{2} \Big(\frac{1}{q_i \cdot k_f} - \frac{1}{q_i \cdot k_i} \Big) \\ & \cdot \Big(1 + \frac{(\vec{q}_i \cdot \vec{e}_{\lambda_i})^2}{q_i \cdot k_i} - \frac{(\vec{q}_i \cdot \vec{e}_{\lambda_f})^2}{q_i \cdot k_f} \Big) \Big] + \frac{1}{2} \frac{(\vec{q}_i \cdot \vec{e}_{\lambda_i})^2 (\vec{q}_i \cdot \vec{e}_{\lambda_f})^2 (q_i \cdot k_i - q_i \cdot k_f)^2}{(q_i \cdot k_i)^2 (q_i \cdot k_f)^2} \\ & + 2 (\vec{e}_{\lambda_i} \cdot \vec{e}_{\lambda_f})^2 + \frac{(\vec{q}_i \cdot \vec{k}_f \vec{q}_i \cdot \vec{e}_{\lambda_i} \vec{e}_{\lambda_f} \cdot \vec{k}_i + \vec{q}_i \cdot \vec{k}_i \vec{q}_i \cdot \vec{e}_{\lambda_i} \vec{q}_i \cdot \vec{e}_{\lambda_i} \vec{q}_i \cdot \vec{k}_f)^2 \\ & + \frac{1}{2} \Big(\vec{q}_i \cdot \vec{e}_{\lambda_f} \vec{e}_{\lambda_f} \cdot \vec{k}_i + \vec{q}_i \cdot \vec{e}_{\lambda_i} \vec{e}_{\lambda_i} \cdot \vec{k}_f + 5 \vec{q}_i \cdot \vec{e}_{\lambda_i} \vec{q}_i \cdot \vec{e}_{\lambda_f} \vec{e}_{\lambda_i} \cdot \vec{e}_{\lambda_f} \Big) \Big(\frac{1}{q_i \cdot k_i} - \frac{1}{q_i \cdot k_f} \Big) \\ & + \vec{e}_{\lambda_i} \cdot \vec{e}_{\lambda_f} \Big(\frac{\vec{q}_i \cdot \vec{e}_{\lambda_i} \vec{e}_{\lambda_f} \cdot \vec{k}_i}{q_i \cdot k_i} + \frac{\vec{q}_i \cdot \vec{e}_{\lambda_f} \vec{e}_{\lambda_i} \cdot \vec{k}_f}{q_i \cdot k_f} \Big) \\ & + \frac{3}{2} \Big[(\vec{q}_i \cdot \vec{e}_{\lambda_i})^2 \vec{q}_i \cdot \vec{e}_{\lambda_f} \vec{e}_{\lambda_f} \cdot \vec{k}_i \Big(\frac{1}{(q_i \cdot k_i)^2} - \frac{1}{(q_i \cdot k_i)^2} \Big) \Big] \\ & + \frac{1}{4} \Big(\frac{(\vec{q}_i \cdot \vec{e}_{\lambda_i})^2}{(q_i \cdot k_i)^2} + \frac{(\vec{q}_i \cdot \vec{e}_{\lambda_f})^2}{(q_i \cdot k_i)^2} \Big) \Big(q_i \cdot k_i - q_i \cdot k_f \Big) \Big\} \end{split}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへつ

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

Let's consider electron and photon perfectly counterpropagating.

$$\begin{aligned} |\vec{k_f}(\theta)| &= \frac{|\vec{k_i}|\sqrt{m_e^2 c^2 + |\vec{q_i}|^2} + |\vec{q_i}||\vec{k_i}|}{|\vec{k_i}| + \sqrt{m_e^2 c^2} + |\vec{q_i}|^2 - |\vec{q_i} + \vec{k_i}|\cos\theta} \\ |\vec{q_i}| &\gg m_e c \gg |\vec{k_i}| \end{aligned}$$

$$A \approx \left(\frac{e^2}{4\pi m_e c^2}\right)^2 \frac{8|\vec{q_i}|^2}{m_e^2 c^2} \frac{1}{\left(1 + \frac{2|\vec{q_i}|^2}{m_e^2 c^2}(1 - \cos\theta)\right)^2} = \frac{8r_0^2 \gamma^2}{\left(1 + 2\gamma^2(1 - \cos\theta)\right)^2} \end{aligned}$$

<ロト < 同ト < 三ト < 三ト < 三 ・ つくや</p>

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

Let's consider electron and photon perfectly counterpropagating.

$$|\vec{k_f}(\theta)| = \frac{|\vec{k_i}|\sqrt{m_e^2 c^2 + |\vec{q_i}|^2 + |\vec{q_i}||\vec{k_i}|}}{|\vec{k_i}| + \sqrt{m_e^2 c^2 + |\vec{q_i}|^2 - |\vec{q_i} + \vec{k_i}|\cos\theta}} |\vec{q_i}| \gg m_e c \gg |\vec{k_i}|$$

$$A \approx \left(\frac{e^2}{4\pi m_e c^2}\right)^2 \frac{8|\vec{q}_i|^2}{m_e^2 c^2} \frac{1}{\left(1 + \frac{2|\vec{q}_i|^2}{m_e^2 c^2}(1 - \cos\theta)\right)^2} = \frac{8r_0^2 \gamma^2}{\left(1 + 2\gamma^2(1 - \cos\theta)\right)^2}$$

$$\begin{array}{ll} \theta = 0 & A \approx r_0^2 8 \gamma^2 \\ \theta < \frac{1}{\gamma} & A \approx 8 r_0^2 \gamma^2 \frac{1}{(1+\gamma^2 \theta^2)^2} \\ \theta = \frac{1}{\gamma} & A \approx 2 r_0^2 \gamma^2 \\ \frac{1}{\gamma} < \theta < 1 & A \approx 8 r_0^2 \frac{1}{\gamma^2 \theta^4} \\ \theta > 1 & A \approx 2 r_0^2 \frac{1}{\gamma^2 (1-\cos \theta)^2} \end{array}$$

イロト イワト イヨト

1

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

Realizing the sum and the average on the polarization for small $\boldsymbol{\theta}$ angles

$$B \approx 1 - \frac{\theta^2}{2} - \left(\frac{1}{2} - \frac{\theta^2}{4}\right) \frac{\theta^2}{\theta^2 + \frac{m_e^2 c^2}{|\vec{q}_i|^2}} + \frac{1}{2} \left(\frac{\theta^2}{\theta^2 + \frac{m_e^2 c^2}{|\vec{q}_i|^2}}\right)^2 - \left(1 - \frac{\theta^2}{4}\right) \frac{|\vec{k}_i|}{|\vec{q}_i|} \frac{\theta^2}{\theta^2 + \frac{m_e^2 c^2}{|\vec{q}_i|^2}}$$

イロト イボト イヨト イヨト

-

Introduction	Thomson/Compton	SPARCLAB	ELI-NP	Conclusions
	000 000 000	000 0000 0000	0 00 000000	

Realizing the sum and the average on the polarization for small $\boldsymbol{\theta}$ angles

$$B \approx 1 - \frac{\theta^2}{2} - \left(\frac{1}{2} - \frac{\theta^2}{4}\right) \frac{\theta^2}{\theta^2 + \frac{m_e^2 c^2}{|\vec{q}_i|^2}} + \frac{1}{2} \left(\frac{\theta^2}{\theta^2 + \frac{m_e^2 c^2}{|\vec{q}_i|^2}}\right)^2 - \left(1 - \frac{\theta^2}{4}\right) \frac{|\vec{k}_i|}{|\vec{q}_i|} \frac{\theta^2}{\theta^2 + \frac{m_e^2 c^2}{|\vec{q}_i|^2}}$$

イロト イボト イヨト イヨト

-

There is a critical dependence on the angle θ for both A and B.