Ab-initio analysis of the structural and electronic properties of new carbon allotropes.

Francesco Delodovici

Introduction: known carbon allotropes

- Graphite
- Diamond
- Hexagonal diamond

 $sp^2 \rightarrow conductor$

sp³ → insulators

Introduction: known "novel" carbon allotropes

- Fullerenes
- Nanotubes
- Graphene
- Carbyne

 $sp^2 \rightarrow conductor$

Mixing hybridization

Possible new allotropes (sacada.sctms.ru)

• Novamene

• Protomene

Mixing hybridization

• Need for periodicity: search for Bravais lattice.

Novamene

Protomene

120

120

120

Mixing hybridization

Need for periodicity: search for Bravais lattice.

Novamene: hexagonal lattice P-62m (#189)

Protomene: hexagonal lattice P-31m (#157)

Dimers formation

• The sp² atoms can switch to sp³

Dimers formation

• The sp² atoms can switch to sp³

Ab-initio ground-state theory: no parameters

 $E[n(\vec{r})] = T[n(\vec{r})] + E_{Nucl}[n(\vec{r})] + E_{Ha}[n(\vec{r})] + E_{xc}[n(\vec{r})]$

Ab-initio ground-state theory: no parameters

 $E[n(\vec{r})] = T[n(\vec{r})] + E_{Nucl}[n(\vec{r})] + E_{Ha}[n(\vec{r})] + E_{xc}[n(\vec{r})]$

• Kohn-Sham equations:

$$\left\{-\frac{\hbar^2}{2m}\nabla^2 + V_{nuc}(\vec{r}) + V_{Ha}[n(\vec{r})] + V_{xc}[n(\vec{r})]\right\} \psi_i(\vec{r}) = \epsilon_i \psi_i(\vec{r})$$

Ab-initio ground-state theory: no parameters

 $E[n(\vec{r})] = T[n(\vec{r})] + E_{Nucl}[n(\vec{r})] + E_{Ha}[n(\vec{r})] + E_{xc}[n(\vec{r})]$

• Kohn-Sham equations:

$$\left\{-\frac{\hbar^2}{2m}\nabla^2 + V_{nuc}(\vec{r}) + V_{Ha}[n(\vec{r})] + V_{xc}[n(\vec{r})]\right\} \psi_i(\vec{r}) = \epsilon_i \ \psi_i(\vec{r})$$

Approximated (LDA,GGA etc.)

Ab-initio ground-state theory: no parameters

 $E[n(\vec{r})] = T[n(\vec{r})] + E_{Nucl}[n(\vec{r})] + E_{Ha}[n(\vec{r})] + E_{xc}[n(\vec{r})]$

• Kohn-Sham equations:

$$\left\{-\frac{\hbar^2}{2m}\nabla^2 + V_{nuc}(\vec{r}) + V_{Ha}[n(\vec{r})] + V_{xc}[n(\vec{r})]\right\} \psi_i(\vec{r}) = \epsilon_i \psi_i(\vec{r})$$

Total energy:

$$E_{tot} = \sum_{j} \epsilon_{j} - E_{Ha} + \int [\epsilon_{xc}(n(\vec{r})) - V_{xc}(n(\vec{r}))]n(\vec{r})d\vec{r} + E_{ion-ion}$$

Ab-initio ground-state theory: no parameters

 $E[n(\vec{r})] = T[n(\vec{r})] + E_{Nucl}[n(\vec{r})] + E_{Ha}[n(\vec{r})] + E_{xc}[n(\vec{r})]$

• Kohn-Sham equations:

$$\left\{-\frac{\hbar^2}{2m}\nabla^2 + V_{nuc}(\vec{r}) + V_{Ha}[n(\vec{r})] + V_{xc}[n(\vec{r})]\right\} \psi_i(\vec{r}) = \epsilon_i \psi_i(\vec{r})$$

Total energy (fixed ions position):

Iterative solution of KS equations

P.Giannozzi, http://www.quantum-espresso.org/tutorials/

 Minimum energy configuration unkown → is any dimer present?

- Minimum energy configuration unkown \rightarrow is any dimer present?
- Structural optimization of different configurations (DFT relaxation)

Total energy, binding energy

- Minimum energy configuration unkown → is any dimer present?
- Structural optimization of different configurations (DFT relaxation)

Total energy, binding energy

Structural parameter	protomene no-dimer LDA(GGA)	protomene ground state LDA(GGA)	novemene no-dimer LDA(GGA)	novamene ground state LDA(GGA)	diamond LDA (GGA)	graphite LDA (GGA)
N _{atoms} per cell	24	48	26	52	2	4
N _{dimers} corner	_	4	—	—	—	_
N _{dimers} central	_	2	—	2	—	_
$\Delta E_{\rm b}$ per atom [eV]	0.2713 (0.1882)	$\begin{array}{c} 0.1997 \\ (0.1315) \end{array}$	0.269 —	$\begin{array}{c} 0.2272 \\ (0.1350) \end{array}$	$\begin{array}{c} 0 \\ (0) \end{array}$	-0.1460 (-0.3176)

 Excitation energy as a function of the displacement of the switching carbons

Numerical results

Structural parameter	protomene no-dimer LDA(GGA)	protomene ground state LDA(GGA)	novemene no-dimer LDA(GGA)	novamene ground state LDA(GGA)	diamond LDA (GGA)	graphite LDA (GGA)	Comparable stability
N _{atoms} per cell	24	48	26	52	2	4	
N _{dimers} corner	—	4	—	—	—	_	
N _{dimers} central	—	2	—	2	—	-	- - F
$\Delta E_{\rm b}$ per atom [eV]	0.2713 (0.1882)	$0.1997 \\ (0.1315)$	0.269 —	$0.2272 \\ (0.1350)$	$\begin{array}{c} 0 \\ (0) \end{array}$	$-0.1460 \\ (-0.3176)$	$E_{b} = \frac{E_{tot}}{N} - E_{atom}$
band gap [eV]	$0.000 \\ (0.000)$	3.380 (1.274)	0.000	0.336 (0.371)	4.220 (4.445)	$0.000 \\ (0.000)$	-
<i>a,b</i> [pm]	807.2 (816.6)	807.4 (815.7)	841.8 -	841.9 (851.0)	352.3 (357.0)	243.3 (245.8)	$E_{b}^{diam} = -8.908[eV] LDA$
<i>c</i> [pm]	247.2 (250.9)	482.8 (497.7)	251.9	499.8 (509.0)	352.3 (357.0)	589.8 (644.4)	-8.252[eV] GGA
density [kg m ⁻³]	3432 (3303)	3512 (3338)	3351	3381 (3248)	3649 (3504)	2639 (2366)	_

Insulator - metal transition

Insulator - metal transition

12

Insulator - metal transition

13

Numerical results

Structural parameter	protomene no-dimer LDA(GGA)	protomene ground state LDA(GGA)	novemene no-dimer LDA(GGA)	novamene ground state LDA(GGA)	diamond LDA (GGA)	graphite LDA (GGA)	
N _{atoms} per cell	24	48	26	52	2	4	
N _{dimers} corner	_	4	_	_	_	_	
N _{dimers} central	_	2	_	2	_	_	
$\Delta E_{\rm b}$ per atom [eV]	0.2713 (0.1882)	0.1997 (0.1315)	0.269	0.2272 (0.1350)	$\begin{array}{c} 0 \\ (0) \end{array}$	-0.1460 (-0.3176)	transition
band gap [eV]	$0.000 \\ (0.000)$	3.380 (1.274)	0.000	$0.336 \\ (0.371)$	$4.220 \\ (4.445)$	$0.000 \\ (0.000)$	
<i>a,b</i> [pm]	807.2 (816.6)	807.4 (815.7)	841.8 -	841.9 (851.0)	352.3 (357.0)	243.3 (245.8)	
<i>c</i> [pm]	247.2 (250.9)	482.8 (497.7)	251.9	499.8 (509.0)	352.3 (357.0)	589.8 (644.4)	
density [kg m ⁻³]	3432 (3303)	3512 (3338)	3351	3381 (3248)	3649 (3504)	2639 (2366)	

Numerical results

Structural parameter	protomene no-dimer LDA(GGA)	protomene ground state LDA(GGA)	novemene no-dimer LDA(GGA)	novamene ground state LDA(GGA)	diamond LDA (GGA)	graphite LDA (GGA)	
N _{atoms} per cell	24	48	26	52	2	4	-
N _{dimers} corner	_	4	_	_	_	_	-
N _{dimers} central	_	2	_	2	_	_	
$\Delta E_{\rm b}$ per atom [eV]	0.2713 (0.1882)	0.1997 (0.1315)	0.269	0.2272 (0.1350)	$\begin{array}{c} 0 \\ (0) \end{array}$	-0.1460 (-0.3176)	transition
band gap [eV]	$0.000 \\ (0.000)$	3.380 (1.274)	0.000	$0.336 \\ (0.371)$	$4.220 \\ (4.445)$	$0.000 \\ (0.000)$	
<i>a,b</i> [pm]	807.2 (816.6)	807.4 (815.7)	841.8 -	841.9 (851.0)	352.3 (357.0)	243.3 (245.8)	r
<i>c</i> [pm]	247.2 (250.9)	482.8 (497.7)	251.9	499.8 (509.0)	352.3 (357.0)	589.8 (644.4)	-
density [kg m ⁻³]	3432 (3303)	3512 (3338)	3351 -	3381 (3248)	3649 (3504)	2639 (2366)	
[pm] c [pm] density [kg m ⁻³]	(816.6) 247.2 (250.9) 3432 (3303)	(815.7) 482.8 (497.7) 3512 (3338)	- 251.9 - 3351 -	(851.0) 499.8 (509.0) 3381 (3248)	(357.0) 352.3 (357.0) 3649 (3504)	(245.8) 589.8 (644.4) 2639 (2366)	

Phonons dispersion relation: protomene ground state

• DFPT: density functional perturbation theory

 $C_{I,J}^{\alpha,\beta} = \frac{\partial E\{\vec{R}\}}{\partial R_{r}^{\alpha} \cdot \partial R_{r}^{\beta}}$ Interatomic force constant matrix

Phonons dispersion relation: protomene ground state

Phonons dispersion relation: protomene ground state

15

Conclusions

- Theoretical design and optimization of mixed sp²-sp³ carbon structures.
- Temperature driven switching between insulating and conducting states.
- Stability has been checked by phonon spectra calculations.

Further developments

- Complete analysis of novamene dimers combination
- Understanding optical gap in protomene phonons
- Phonons spectra of novamene
- Slab configurations
- Raman spectrum

• Exchange correlation term.

$$LDA \Rightarrow E_{xc}[n(\vec{r})] = \int_{V} \epsilon_{heg}(n(\vec{r}))n(\vec{r})d\vec{r} \qquad \epsilon_{heg} \approx \sum_{i} [n_{i}^{2/3} - n_{i}^{1/3}]$$

$$V_{xc}[n(\vec{r})] = \frac{\delta E_{xc}[n(\vec{r})]}{\delta n(\vec{r})} = \epsilon_{heg}(n(\vec{r})) + n(\vec{r})\frac{\partial \epsilon_{heg}(\vec{r}, n(\vec{r}))}{\partial n(\vec{r})}$$

$$QMC$$

$$E_{tot} = \sum_{j} \epsilon_{j} - E_{Ha} + \int \epsilon_{xc}(n(\vec{r}))n(\vec{r})d\vec{r} - \int V_{xc}(n(\vec{r}))n(\vec{r})d\vec{r} + E_{ion-ion}$$

$$E_{Ha} = \frac{e^{2}}{2} \int \frac{n(\vec{r})n(\vec{r}')}{|\vec{r} - \vec{r}'|} d\vec{r}d\vec{r}' \qquad LDA(GGA) \qquad E_{ion-ion} = e^{2} \sum_{k < l} \frac{Z_{k}Z_{l}}{|R_{k} - R_{l}|}$$

🖌 HF

• Total energy

$$E_{tot} = \sum_{j} \epsilon_{j} - E_{Ha} + \int \epsilon_{xc}(n(\vec{r}))n(\vec{r})d\vec{r} - \int V_{xc}(n(\vec{r}))n(\vec{r})d\vec{r} + E_{ion-ion}$$

double counting
$$T_{ks} + E_{ions}(n(\vec{r})) + E_{Ha}$$

$$E_{tot} = T_{ks} + E_{ions} + E_{Ha} + \int \epsilon_{xc}(n(\vec{r}))n(\vec{r})d\vec{r} + E_{ion-ion}$$

DFT relaxation

BFGS algorithm: quasi newtonian algorithm

(iteratively updated)

Hessian approximation $\vec{F}_{I} = -\vec{\nabla} E_{tot}(\vec{R}) = -\langle \psi | \vec{\nabla} V(\vec{R}) | \psi \rangle - \vec{\nabla} E_{tot}(\vec{R})$

Density Functional Perturbation Theory

X-ray diffraction pattern

