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Random Matrices and where to

find them



Definition

Random Matrix*: a N × N matrix whose entries are random variables.

Example: N = 2, ρ(x) = 1
2δ(x − 1) + 1

2δ(x + 1).

M1 =

(
1 1

−1 1

)
M2 =

(
−1 −1

1 1

)

RM are grouped in ensembles. For example:

• Gaussian Orthogonal/Unitary Ensemble (GOE/GUE): M = M† with

independent and gaussian-distributed real/complex entries;

• Ginibre Real/Complex Ensemble: independent and

gaussian-distributed real/complex entries, no symmetries.

*Mehta. Random matrices. Elsevier (2004). 1
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Motivation

The fundamental question

What can one say about statistical properties of eigenvalues or

eigenvectors of RMs?

RM are omnipresent in physics, for example*:

• Nuclear physics: the local statistical behaviour of slow neutron

resonances is identical with the eigenvalues of a RM;

• Number theory: some properties of nontrivial zeros of Riemann’s

Zeta function are linked to those of eigenvalues of GUE RM;

• Statistical physics: Ising model on random planar graphs with fixed

connectivity can be solved using RM;

• Complex systems: Equilibrium states can be counted via a RM

approach.

*Brézin, Kazakov, Servan, Wiegmann, Zabrodin. Applications of random matrices in physics. Springer (2006). 2
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*Brézin, Kazakov, Servan, Wiegmann, Zabrodin. Applications of random matrices in physics. Springer (2006). 2



Motivation

The fundamental question

What can one say about statistical properties of eigenvalues or

eigenvectors of RMs?

RM are omnipresent in physics, for example*:

• Nuclear physics: the local statistical behaviour of slow neutron

resonances is identical with the eigenvalues of a RM;

• Number theory: some properties of nontrivial zeros of Riemann’s

Zeta function are linked to those of eigenvalues of GUE RM;

• Statistical physics: Ising model on random planar graphs with fixed

connectivity can be solved using RM;

• Complex systems: Equilibrium states can be counted via a RM

approach.

*Brézin, Kazakov, Servan, Wiegmann, Zabrodin. Applications of random matrices in physics. Springer (2006). 2



Some known results

An impressive number of results have been obtained, among the other*:

Dyson gas picture

Analogy between the statistical properties of eigenvalues of RMs and

those of a gas of charged particles in two dimensions.

Wigner semicircle law for GOE and GUE

p(Λ) =
1

N

〈
N∑

n=1

δ(Λ− Λn)

〉
, therefore lim

N→∞
p(Λ) =

1

π

√
2− Λ2 .

*Forrester. Log-gases and random matrices. Princeton University Press (2010). 3
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Euclidean Random Matrices



What are they and why are so difficult to handle with

Euclidean Random Matrix* (ERM) M: Mij = f (‖~xi − ~xj‖) where ~xi ,

i = 1, . . . ,N are the positions of random points chosen in a volume.

3
1

2
d

d13

23

d 1
2

→

 f (0) f (d12) f (d13)

f (d12) f (0) f (d23)

f (d13) f (d23) f (0)



Randomness

Point positions are random

variables sampled from ρ(~x).

Difficulty

Euclidean distances are correlated!

*Mezard, Parisi, Zee, 1999, Nucl. Phys. B 559, 689. 4
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Known applications

Many problems (often still open) in condensed matter physics and

complex systems have been investigated by using ERM*:

• Vibrations in topologically disordered systems (Brillouin peak, boson

peak, Anderson localization);

• Electron glass dynamics (localized electronic states randomly

distributed in space and weakly coupled by phonons);

• Population dynamics (persistence of a metapopulation in random

fragmented landscapes).

*Goetschy, Skipetrov, Euclidean random matrices and their applications in physics, arXiv:1303.2880v1, 2013. 5
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(almost*) All known results

High density limit (ρ = N
V →∞):

p(Λ) ∼ 1

ρ

∫
dd~k

(2π)d
δ(Λ− ρ f̃ (~k)),

where f̃ (~k) =
∫
V
dd~r f (~r) e i

~k·~r .

Low density limit (ρ = N
V → 0):

p(Λ) ∼δ(Λ− 1)

+
ρ

2

∫
dd~r (δ(Λ− 1− f (~r))

+δ(Λ− 1 + f (~r)) .

(the function used for the histograms is f (x) = e−x
2

)

*Grigera, Martin-Mayor, Parisi, Urbani, Verrocchio, On the high-density expansion for Euclidean random

matrices, J. Stat. Mech. (2011) P02015. 6
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Perspectives



Understanding ERM

There are many open questions about ERM, for example:

Eigenvalue problem

Correction to the probability

distribution for high and low

density.

Eigenvector problem

Can we say something about

eigenvectors? And what about

their localization properties?

Characteristic polynomial

It has been studied for RM, but not for ERM. It is useful to compute

the determinant.

7
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Application: the assignment problem I

Consider N blue and N red points. The assignment problem consists in

matching the points in couples minimizing a function of their distances.

1 2 3

1 2 3
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Application: the assignment problem II

A possible path to solution:

1. Define the matrix (ERM):

Bij = exp [−βf (‖~xi − ~yj‖)] .

2. Relate the determinant to the optimal cost:

detB =
∑
σ∈SN

(−1)σ exp

[
−β
∑
i

f (
∥∥~xi − ~yσ(i)

∥∥)

]
,

therefore

Eσ? = lim
β→∞

(
− 1

β

)
log (|detB|) .

3. Perform the mean over disorder:

Eσ? = lim
β→∞

(
− 1

β

)
log (|detB|).

9
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Conclusion: take-home messages

• RM have been extensively studied and understood; they have been

proved to be extremely useful in a wide range of topics;

• ERM are more difficult to study, but a greater knowledge of them

could be precious for several open problems;

• many other problem can be addressed with the formalism of ERM

(e.g. optimization problems), which is not been used so far.
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Thank you for your attention!

10



Dyson gas picture

The joint probability density function for eigenvalues of GOE RMs is:

p(x1, . . . , xN) =
1

ZN
e

1
2

∑N
i=1 x

2
i

∏
j<k

|xj − xk |,

with

ZN = CN

∫ N∏
j=1

dxj exp

−βN2

 1

2N

∑
i

x2
i −

1

2N2

∑
i 6=j

log |xi − xj |


which is the partition function of a gas of Coulomb-interacting

two-dimensional particles, in an external confining potential. Since the

eigenvalues of a GOE RM are real, these particles are confined in a single

dimension.



RM & nuclear physics

A plot of slow neutron resonance cross-sections on thorium 232 and

uranium 238 nuclei:

The resonance peaks are at eigenvalues of a complicated Hamiltonian →
we can study a random Hamiltonian!

Wigner, Dyson.



RM & number theory

ζ(z) =
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1

,

is the Riemann zeta function for Re(z) > 1, where the product is on all

the prime numbers greater than 1. Moreover it satisfies:

ζ(z) = 2zπz−1 sin
(πz

2

)
Γ (1− z) ζ(1− z).

So ζ(z) = 0 for z = −2,−4,−6, . . . . These are the trivial zeros. For the

(unfolded) non-trivial zeros wn, Montgomery conjectured that

lim
W→∞

1

W
#{wn,wm ∈[0,W ] : α ≤ wn − w < β} =∫ β

α

(
δ(x) + 1− sin2(πx)

π2x2

)
dx .

This equation holds exactly for eigenvalues of RM from the GUE (and

CUE) in the limit N →∞.

Keating.



RM & statistical physics

The averaged partition function of an Ising model on (random) planar

graph is

Z ≡
∑
G

∑
{σ}

eJ
∑

(i,j)∈G σiσj+H
∑

i σi .

One can built a 2-matrix model:∫
dA dB exp

[
Tr
[
α
(
A2 + B2

)
− 2βAB +

g

N

(
eHA4 + e−HB4

)]]
.

The mapping is performed considering the small-g perturbative expansion

of the 2-matrix model: each Feynman diagram obtained is a planar graph

in the large N limit, with the identification:

• A4 � spin up;

• B4 � spin down;

• α/β = e2J .

Boulatov, Kazakov.



RM & complex systems

Consider the system of N differential equations (~x = (x1, x2, . . . , xN))

ẋi = fi (~x) with i = 1, 2, . . . ,N.

(Lotka-Volterra, Neural networks, . . . ). An equilibrium state ~x? is s.t.

fi (~x?) = 0 ∀ i = 1, 2, . . . ,N.

Linearizing around an equilibrium state (~y = ~x − ~x?) brings to

ẏi =
∑
j

Jijyj with i = 1, 2, . . . ,N.

The N dimensional Kac-Rice formula gives the number of equilibria ∈ D:

#D =

∫
D

N∏
i=1

δ(fi (~x?))

∣∣∣∣det

(
∂fi
∂xj

)∣∣∣∣dx1 . . . dxN

In the linearized problem, fi =
∑

j Jijxj and one can consider Jij being a

RM. Then one can compute the mean number of equilibria ∈ D.

Fyodorov.



ERM & vibrations in topologically disordered systems

A topologically disordered system is an ensamble of N � 1 particle which

harmonically oscillate around their equilibrium positions, randomly

distributed in a volume V. Several open questions can be investigated by

means of ERM:

• the Brillouin peak, a peak of anomalous width in the dynamic

structure factor (DSF);

• the boson peak, a peak in the density of states (DOS) which

appears only in amorphous solids;

• the Anderson localization of phonons.

Grigera, Amir.
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