Euclidean Random Matrices

Andrea Di Gioacchino

October 10, 2017
Università degli Studi di Milano, Dipartimento di Fisica

Random Matrices and where to
find them

Definition

Random Matrix*: a $N \times N$ matrix whose entries are random variables.

Example: $N=2, \rho(x)=\frac{1}{2} \delta(x-1)+\frac{1}{2} \delta(x+1)$.

$$
M_{1}=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) \quad M_{2}=\left(\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right)
$$

Definition

Random Matrix*: a $N \times N$ matrix whose entries are random variables.

Example: $N=2, \rho(x)=\frac{1}{2} \delta(x-1)+\frac{1}{2} \delta(x+1)$.

$$
M_{1}=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) \quad M_{2}=\left(\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right)
$$

RM are grouped in ensembles. For example:

- Gaussian Orthogonal/Unitary Ensemble (GOE/GUE): $M=M^{\dagger}$ with independent and gaussian-distributed real/complex entries;

Definition

Random Matrix*: a $N \times N$ matrix whose entries are random variables.

Example: $N=2, \rho(x)=\frac{1}{2} \delta(x-1)+\frac{1}{2} \delta(x+1)$.

$$
M_{1}=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) \quad M_{2}=\left(\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right)
$$

RM are grouped in ensembles. For example:

- Gaussian Orthogonal/Unitary Ensemble (GOE/GUE): $M=M^{\dagger}$ with independent and gaussian-distributed real/complex entries;
- Ginibre Real/Complex Ensemble: independent and gaussian-distributed real/complex entries, no symmetries.

Motivation

The fundamental question

What can one say about statistical properties of eigenvalues or eigenvectors of RMs?

RM are omnipresent in physics, for example*:

- Nuclear physics: the local statistical behaviour of slow neutron resonances is identical with the eigenvalues of a RM;

Motivation

The fundamental question

What can one say about statistical properties of eigenvalues or eigenvectors of RMs?

RM are omnipresent in physics, for example*:

- Nuclear physics: the local statistical behaviour of slow neutron resonances is identical with the eigenvalues of a RM;
- Number theory: some properties of nontrivial zeros of Riemann's Zeta function are linked to those of eigenvalues of GUE RM;

Motivation

The fundamental question

What can one say about statistical properties of eigenvalues or eigenvectors of RMs?

RM are omnipresent in physics, for example*:

- Nuclear physics: the local statistical behaviour of slow neutron resonances is identical with the eigenvalues of a RM;
- Number theory: some properties of nontrivial zeros of Riemann's Zeta function are linked to those of eigenvalues of GUE RM;
- Statistical physics: Ising model on random planar graphs with fixed connectivity can be solved using RM;

Motivation

The fundamental question

What can one say about statistical properties of eigenvalues or eigenvectors of RMs?

RM are omnipresent in physics, for example*:

- Nuclear physics: the local statistical behaviour of slow neutron resonances is identical with the eigenvalues of a RM;
- Number theory: some properties of nontrivial zeros of Riemann's Zeta function are linked to those of eigenvalues of GUE RM;
- Statistical physics: Ising model on random planar graphs with fixed connectivity can be solved using RM;
- Complex systems: Equilibrium states can be counted via a RM approach.

Some known results

An impressive number of results have been obtained, among the other*:

Dyson gas picture

Analogy between the statistical properties of eigenvalues of RMs and those of a gas of charged particles in two dimensions.

Some known results

An impressive number of results have been obtained, among the other*:

Dyson gas picture

Analogy between the statistical properties of eigenvalues of RMs and those of a gas of charged particles in two dimensions.

Wigner semicircle law for GOE and GUE

$$
p(\Lambda)=\frac{1}{N}\left\langle\sum_{n=1}^{N} \delta\left(\Lambda-\Lambda_{n}\right)\right\rangle, \quad \text { therefore } \quad \lim _{N \rightarrow \infty} p(\Lambda)=\frac{1}{\pi} \sqrt{2-\Lambda^{2}} .
$$

Some known results

An impressive number of results have been obtained, among the other*:

Dyson gas picture

Analogy between the statistical properties of eigenvalues of RMs and those of a gas of charged particles in two dimensions.

Wigner semicircle law for GOE and GUE

$$
p(\Lambda)=\frac{1}{N}\left\langle\sum_{n=1}^{N} \delta\left(\Lambda-\Lambda_{n}\right)\right\rangle, \quad \text { therefore } \quad \lim _{N \rightarrow \infty} p(\Lambda)=\frac{1}{\pi} \sqrt{2-\Lambda^{2}} .
$$

[^0]
Some known results

An impressive number of results have been obtained, among the other*:

Dyson gas picture

Analogy between the statistical properties of eigenvalues of RMs and those of a gas of charged particles in two dimensions.

Wigner semicircle law for GOE and GUE

$$
p(\Lambda)=\frac{1}{N}\left\langle\sum_{n=1}^{N} \delta\left(\Lambda-\Lambda_{n}\right)\right\rangle, \quad \text { therefore } \quad \lim _{N \rightarrow \infty} p(\Lambda)=\frac{1}{\pi} \sqrt{2-\Lambda^{2}} .
$$

[^1]
Some known results

An impressive number of results have been obtained, among the other*:

Dyson gas picture

Analogy between the statistical properties of eigenvalues of RMs and those of a gas of charged particles in two dimensions.

Wigner semicircle law for GOE and GUE

$$
p(\Lambda)=\frac{1}{N}\left\langle\sum_{n=1}^{N} \delta\left(\Lambda-\Lambda_{n}\right)\right\rangle, \quad \text { therefore } \quad \lim _{N \rightarrow \infty} p(\Lambda)=\frac{1}{\pi} \sqrt{2-\Lambda^{2}} .
$$

*Forrester. Log-gases and random matrices. Princeton University Press (2010).

Euclidean Random Matrices

What are they and why are so difficult to handle with

Euclidean Random Matrix* (ERM) $M: M_{i j}=f\left(\left\|\vec{x}_{i}-\vec{x}_{j}\right\|\right)$ where \vec{x}_{i}, $i=1, \ldots, N$ are the positions of random points chosen in a volume.

What are they and why are so difficult to handle with

Euclidean Random Matrix* (ERM) $M: M_{i j}=f\left(\left\|\vec{x}_{i}-\vec{x}_{j}\right\|\right)$ where \vec{x}_{i}, $i=1, \ldots, N$ are the positions of random points chosen in a volume.

Randomness

Point positions are random variables sampled from $\rho(\vec{x})$.

What are they and why are so difficult to handle with

Euclidean Random Matrix* (ERM) $M: M_{i j}=f\left(\left\|\vec{x}_{i}-\vec{x}_{j}\right\|\right)$ where \vec{x}_{i}, $i=1, \ldots, N$ are the positions of random points chosen in a volume.

Randomness

Point positions are random variables sampled from $\rho(\vec{x})$.

Difficulty

Euclidean distances are correlated!

Known applications

Many problems (often still open) in condensed matter physics and complex systems have been investigated by using ERM*:

- Vibrations in topologically disordered systems (Brillouin peak, boson peak, Anderson localization);

Known applications

Many problems (often still open) in condensed matter physics and complex systems have been investigated by using ERM*:

- Vibrations in topologically disordered systems (Brillouin peak, boson peak, Anderson localization);
- Electron glass dynamics (localized electronic states randomly distributed in space and weakly coupled by phonons);

Known applications

Many problems (often still open) in condensed matter physics and complex systems have been investigated by using ERM*:

- Vibrations in topologically disordered systems (Brillouin peak, boson peak, Anderson localization);
- Electron glass dynamics (localized electronic states randomly distributed in space and weakly coupled by phonons);
- Population dynamics (persistence of a metapopulation in random fragmented landscapes).

(almost*) All known results

High density limit $\left(\rho=\frac{N}{V} \rightarrow \infty\right)$:

$$
p(\Lambda) \sim \frac{1}{\rho} \int \frac{\mathrm{~d}^{d} \vec{k}}{(2 \pi)^{d}} \delta(\Lambda-\rho \tilde{f}(\vec{k}))
$$

where $\tilde{f}(\vec{k})=\int_{V} \mathrm{~d}^{d} \vec{r} f(\vec{r}) e^{i \vec{k} \cdot \vec{r}}$.

(almost*) All known results

High density limit $\left(\rho=\frac{N}{V} \rightarrow \infty\right)$:
Low density limit $\left(\rho=\frac{N}{V} \rightarrow 0\right)$:

$$
p(\Lambda) \sim \frac{1}{\rho} \int \frac{\mathrm{~d}^{d} \vec{k}}{(2 \pi)^{d}} \delta(\Lambda-\rho \tilde{f}(\vec{k}))
$$

where $\tilde{f}(\vec{k})=\int_{V} \mathrm{~d}^{d} \vec{r} f(\vec{r}) e^{i \vec{k} \cdot \vec{r}}$.

$$
\begin{aligned}
p(\Lambda) \sim & \delta(\Lambda-1) \\
& +\frac{\rho}{2} \int \mathrm{~d}^{d} \vec{r}(\delta(\Lambda-1-f(\vec{r})) \\
& +\delta(\Lambda-1+f(\vec{r})) .
\end{aligned}
$$

(almost*) All known results

High density limit $\left(\rho=\frac{N}{V} \rightarrow \infty\right)$:

$$
\text { Low density limit }\left(\rho=\frac{N}{V} \rightarrow 0\right) \text { : }
$$

$$
p(\Lambda) \sim \frac{1}{\rho} \int \frac{\mathrm{~d}^{d} \vec{k}}{(2 \pi)^{d}} \delta(\Lambda-\rho \tilde{f}(\vec{k}))
$$

where $\tilde{f}(\vec{k})=\int_{V} \mathrm{~d}^{d} \vec{r} f(\vec{r}) e^{i \vec{k} \cdot \vec{r}}$.

$$
\begin{aligned}
p(\Lambda) \sim & \delta(\Lambda-1) \\
& +\frac{\rho}{2} \int \mathrm{~d}^{d} \vec{r}(\delta(\Lambda-1-f(\vec{r})) \\
& +\delta(\Lambda-1+f(\vec{r})) .
\end{aligned}
$$

(the function used for the histograms is $f(x)=e^{-x^{2}}$)

Perspectives

Understanding ERM

There are many open questions about ERM, for example:

Understanding ERM

There are many open questions about ERM, for example:

Eigenvalue problem

Correction to the probability distribution for high and low density.

Understanding ERM

There are many open questions about ERM, for example:

Eigenvalue problem

Correction to the probability distribution for high and low density.

Eigenvector problem

Can we say something about eigenvectors? And what about their localization properties?

Understanding ERM

There are many open questions about ERM, for example:

Eigenvalue problem

Correction to the probability distribution for high and low density.

Eigenvector problem

Can we say something about eigenvectors? And what about their localization properties?

Characteristic polynomial

It has been studied for RM, but not for ERM. It is useful to compute the determinant.

Application: the assignment problem I

Consider N blue and N red points. The assignment problem consists in matching the points in couples minimizing a function of their distances.

1	2	3
\bullet	0	0
\bullet	\bullet	\bullet
1	2	3

Application: the assignment problem I

Consider N blue and N red points. The assignment problem consists in matching the points in couples minimizing a function of their distances.

Application: the assignment problem I

Consider N blue and N red points. The assignment problem consists in matching the points in couples minimizing a function of their distances.

Application: the assignment problem I

Consider N blue and N red points. The assignment problem consists in matching the points in couples minimizing a function of their distances.

$\sigma_{3}=\{2,1,3\}_{2}^{2}$

Application: the assignment problem II

A possible path to solution:

1. Define the matrix (ERM):

$$
B_{i j}=\exp \left[-\beta f\left(\left\|\vec{x}_{i}-\overrightarrow{y_{j}}\right\|\right)\right]
$$

Application: the assignment problem II

A possible path to solution:

1. Define the matrix (ERM):

$$
B_{i j}=\exp \left[-\beta f\left(\left\|\vec{x}_{i}-\overrightarrow{y_{j}}\right\|\right)\right] .
$$

2. Relate the determinant to the optimal cost:

$$
\operatorname{det} B=\sum_{\sigma \in S_{N}}(-1)^{\sigma} \exp \left[-\beta \sum_{i} f\left(\left\|\vec{x}_{i}-\vec{y}_{\sigma(i)}\right\|\right)\right],
$$

therefore

$$
E_{\sigma^{\star}}=\lim _{\beta \rightarrow \infty}\left(-\frac{1}{\beta}\right) \log (|\operatorname{det} B|) .
$$

Application: the assignment problem II

A possible path to solution:

1. Define the matrix (ERM):

$$
B_{i j}=\exp \left[-\beta f\left(\left\|\vec{x}_{i}-\vec{y}_{j}\right\|\right)\right] .
$$

2. Relate the determinant to the optimal cost:

$$
\operatorname{det} B=\sum_{\sigma \in S_{N}}(-1)^{\sigma} \exp \left[-\beta \sum_{i} f\left(\left\|\vec{x}_{i}-\vec{y}_{\sigma(i)}\right\|\right)\right],
$$

therefore

$$
E_{\sigma^{\star}}=\lim _{\beta \rightarrow \infty}\left(-\frac{1}{\beta}\right) \log (|\operatorname{det} B|) .
$$

3. Perform the mean over disorder:

$$
\overline{E_{\sigma^{\star}}}=\lim _{\beta \rightarrow \infty}\left(-\frac{1}{\beta}\right) \overline{\log (|\operatorname{det} B|)} .
$$

Conclusion: take-home messages

- RM have been extensively studied and understood; they have been proved to be extremely useful in a wide range of topics;

Conclusion: take-home messages

- RM have been extensively studied and understood; they have been proved to be extremely useful in a wide range of topics;
- ERM are more difficult to study, but a greater knowledge of them could be precious for several open problems;

Conclusion: take-home messages

- RM have been extensively studied and understood; they have been proved to be extremely useful in a wide range of topics;
- ERM are more difficult to study, but a greater knowledge of them could be precious for several open problems;
- many other problem can be addressed with the formalism of ERM (e.g. optimization problems), which is not been used so far.

Thank you for your attention!

Dyson gas picture

The joint probability density function for eigenvalues of GOE RMs is:

$$
p\left(x_{1}, \ldots, x_{N}\right)=\frac{1}{\mathcal{Z}_{N}} e^{\frac{1}{2} \sum_{i=1}^{N} x_{i}^{2}} \prod_{j<k}\left|x_{j}-x_{k}\right|,
$$

with

$$
\mathcal{Z}_{N}=C_{N} \int \prod_{j=1}^{N} \mathrm{~d} x_{j} \exp \left[-\beta N^{2}\left(\frac{1}{2 N} \sum_{i} x_{i}^{2}-\frac{1}{2 N^{2}} \sum_{i \neq j} \log \left|x_{i}-x_{j}\right|\right)\right]
$$

which is the partition function of a gas of Coulomb-interacting two-dimensional particles, in an external confining potential. Since the eigenvalues of a GOE RM are real, these particles are confined in a single dimension.

RM \& nuclear physics

A plot of slow neutron resonance cross-sections on thorium 232 and uranium 238 nuclei:

The resonance peaks are at eigenvalues of a complicated Hamiltonian \rightarrow we can study a random Hamiltonian!

RM \& number theory

$$
\zeta(z)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

is the Riemann zeta function for $\operatorname{Re}(z)>1$, where the product is on all the prime numbers greater than 1 . Moreover it satisfies:

$$
\zeta(z)=2^{z} \pi^{z-1} \sin \left(\frac{\pi z}{2}\right)\ulcorner(1-z) \zeta(1-z) .
$$

So $\zeta(z)=0$ for $z=-2,-4,-6, \ldots$. These are the trivial zeros. For the (unfolded) non-trivial zeros w_{n}, Montgomery conjectured that

$$
\begin{aligned}
& \lim _{W \rightarrow \infty} \frac{1}{W} \#\left\{w_{n}, w_{m} \in[0, W]: \alpha \leq w_{n}-w<\beta\right\}= \\
& \int_{\alpha}^{\beta}\left(\delta(x)+1-\frac{\sin ^{2}(\pi x)}{\pi^{2} x^{2}}\right) d x
\end{aligned}
$$

This equation holds exactly for eigenvalues of RM from the GUE (and CUE) in the limit $N \rightarrow \infty$.

RM \& statistical physics

The averaged partition function of an Ising model on (random) planar graph is

$$
Z \equiv \sum_{G} \sum_{\{\sigma\}} e^{J \sum_{(i, j) \in G} \sigma_{i} \sigma_{j}+H \sum_{i} \sigma_{i}} .
$$

One can built a 2-matrix model:

$$
\int d A d B \exp \left[\operatorname{Tr}\left[\alpha\left(A^{2}+B^{2}\right)-2 \beta A B+\frac{g}{N}\left(e^{H} A^{4}+e^{-H} B^{4}\right)\right]\right] .
$$

The mapping is performed considering the small-g perturbative expansion of the 2-matrix model: each Feynman diagram obtained is a planar graph in the large N limit, with the identification:

- $A^{4} \rightleftarrows$ spin up;
- $B^{4} \rightleftarrows$ spin down;
- $\alpha / \beta=e^{2 J}$.

RM \& complex systems

Consider the system of N differential equations $\left(\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{N}\right)\right)$

$$
\dot{x}_{i}=f_{i}(\vec{x}) \quad \text { with } \quad i=1,2, \ldots, N .
$$

(Lotka-Volterra, Neural networks, ...). An equilibrium state \vec{x}_{\star} is s.t.

$$
f_{i}\left(\vec{x}_{\star}\right)=0 \quad \forall \quad i=1,2, \ldots, N .
$$

Linearizing around an equilibrium state $\left(\vec{y}=\vec{x}-\vec{x}_{\star}\right)$ brings to

$$
\dot{y}_{i}=\sum_{j} J_{i j} y_{j} \quad \text { with } \quad i=1,2, \ldots, N .
$$

The N dimensional Kac-Rice formula gives the number of equilibria $\in D$:

$$
\#_{D}=\int_{D} \prod_{i=1}^{N} \delta\left(f_{i}\left(\vec{x}_{\star}\right)\right)\left|\operatorname{det}\left(\frac{\partial f_{i}}{\partial x_{j}}\right)\right| d x_{1} \ldots d x_{N}
$$

In the linearized problem, $f_{i}=\sum_{j} J_{i j} x_{j}$ and one can consider $J_{i j}$ being a RM . Then one can compute the mean number of equilibria $\in D$.

ERM \& vibrations in topologically disordered systems

A topologically disordered system is an ensamble of $N \gg 1$ particle which harmonically oscillate around their equilibrium positions, randomly distributed in a volume V. Several open questions can be investigated by means of ERM:

- the Brillouin peak, a peak of anomalous width in the dynamic structure factor (DSF);
- the boson peak, a peak in the density of states (DOS) which appears only in amorphous solids;
- the Anderson localization of phonons.

[^0]: *Forrester. Log-gases and random matrices. Princeton University Press (2010).

[^1]: *Forrester. Log-gases and random matrices. Princeton University Press (2010).

