The investigation of liquid scintillator properties, energy and spatial resolution for JUNO reactor neutrino experiment

Andrey Formozov The University of Milan INFN Milan

- has no charge
- has a tiny mass
- weakly interacts with matter

- three types (flavors) of neutrino
- neutrino can change its flavor due to oscillations

How to detect?

- Small cross section → Huge target mass
- Cosmic background \rightarrow Underground laboratory
- Surrounded radioactivity → Shielding
- Radioactivity → Purification
 of the materials

Solar neutrino 0.1 - 10 MeV

Supernova neutrino 1-40 MeV

SN 1987A

Atmospheric neutrino 0.1 – 1000 GeV

Reactor anti-neutrino 0-10 MeV

a a

The second

JUNO: multi-purpose experiment

Main purpose: Neutrino Mass Hierarchy determination

Neutrino Mass Hierarchy determination

Absolute masses M_1, M_2, M_3 are unknown.

The oscillation probability

$$P = |\langle v_i | v_j \rangle|^2$$

 $\alpha, \beta = e, \mu, \tau$

does not depend on the absolute value of masses, but on:

Neutrino Mass Hierarchy determination

 $\bar{\boldsymbol{\nu}} ? \boldsymbol{\nu}$

Dirac or Majorana?

Supernova fluxes and nucleosynthesis

 Σm_{ν}

cosmology

 $P(\nu \to \nu) ?$ $P(\overline{\nu} \to \overline{\nu})$

CP-violation

Origin of neutrino mass

JUNO experiment

Ultra pure liquid scintillator: 20 Ktons

Photomultipliers: 17000 (20 inches) 34000 (3 inches)

700 m underground

Water Cherenkov pool

53 km from two multi-core nuclear power plants

Start in 2020

Hong-Kong

Beijing

JUNO

13

PURIFICATION

ENERGY RESOLUTION

HIGH ENERGY RESOLUTION: **3** % for **1 MeV** is crucial for **Neutrino Mass Hierarchy** determination LARGE PHOTO-CATHODE COVERAGE: **75** %

Neutrino Mass Hierarchy determination

Positron spectrum: 3% energy resolution SMEARING and SHIFT are DANGEROUS!

Consider our detector is ideal...

Real detector: non-linearity and energy resolution

Quenching effect

Light yield depends on the type of a particle.The more dE/dX, the less phot.

5 MeV beta: ~50000 photons 5 MeV alpha: ~5000 photons

Light yield is non-linear

Intrinsic degradation of the energy resolution is expected!

Experimental setup

Monte Carlo simulation

Summary

- **JUNO** experiment will have a rich scientific program
- The experiment has technological challenges: **purification, energy resolution** and many others
- Before data-taking, a large amount of research activities should be performed. Non-linear response and energy resolution is necessary to examine in order to determine Neutrino Mass Hierarchy

Thank you for your attention!

"So why did we want to detect the free neutrino? Because everybody said, you couldn't do it"

Clyde Cowan

Backup slides

Some open questions of the neutrino physics

Normal or inverted mass ordering

Mass of the neutrino (MH)

 \triangleright Octant of $\theta 23$

CP-violation phase(s) (MH)

Unitarity test, sterile neutrino

Oscillations in case of two generations

 $|V_e>$ S $|V_e>$ $A_{ee} = \langle V_e | V_e \rangle = 1$ $flux \sim 1/r^2$ $P_{ee} = A_{ee}^2 = 1$

Oscillations in case of two generations $v_e \leftrightarrow v_\mu$

Oscillations in case of two generations

$|V_e\rangle = cos\theta |V_1\rangle - sin\theta |V_2\rangle$

 $| \mathcal{V}_e \rangle = sin\theta | \mathcal{V}_1 \rangle + cos\theta | \mathcal{V}_2 \rangle$

$$A_{ee} = \langle \mathcal{V}_e | \mathcal{V}_e \rangle \neq 1 \quad \text{flux } \checkmark 1/r^2$$
$$P(\nu_e \to \nu_e) = 1 - \frac{1}{2} \sin^2 2\theta \ (1 - \cos \frac{\Delta m^2 L}{2E})$$

Theory and experiment

$$V = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\theta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\theta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} P$$

$$P = \operatorname{diag}\{1, e^{i\alpha_{21}/2}, e^{i\alpha_{31}/2}\}$$

$$\Delta m_{21}^{2} |\Delta m_{32}^{2}| |\Delta m_{31}^{2}|$$

$$\alpha m_{21}^{2} |\Delta m_{32}^{2}| |\Delta m_{31}^{2}|$$

$$normal hierarchy$$

$$normal hierarchy$$

$$normal hierarchy$$

Backup slides

29

Compton coincidence technique

There is a possibility to measure directly f(E), verify Birk's model and find kB parameter by **Compton coincidence technique** (CC). We will try to measure f(E), using CC-technique with HPGe as a detector of scattered gamma (1%).

$$E_{\gamma}' = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_e}(1 - \cos\theta)} \quad E_e = E_{\gamma} - E_{\gamma}' = \frac{\frac{E_{\gamma}}{m_e}(1 - \cos\theta)}{1 + \frac{E_{\gamma}}{m_e}(1 - \cos\theta)}$$

Experimental setup

Strategy

Analysis of all published measurements

- Performance of the experiment; Monte Carlo simulations.
- The development of a phenomenological model.
- Simulation and analysis of the JUNO experiment

subdirs.push_back("e+_3.0MeV"); subdirs.push_back("e+_4.0MeV"); subdirs.push_back("e+_5.0MeV"); subdirs.push_back("e+_6.0MeV"); subdirs.push_back("e+_7.0MeV");

SOFTWARE

"SniPER" is a new framework for large scale neutrino experiments

Algorithms, data structures and MC-generators are controlled by a single script

One instrument - for more then 60 collaborators!

Chain ch_sim("evt"); Chain ch_rec("Event/RecEvent/RecHeader"); for(int j=0;j<jobNum;j++){

Super-Kamiokande and SNO

TAKAAKU KAJITA ARTHUR B. MCDONALD

2015

SNO experiment

