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Outline

 Resistive switching:

phenomenology and applications

 Device characterization

 Nano devices using block copolymers
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Resistive switching in MIM structures

A
Metal

Metal

Insulator

Capacitor-like structure with 
electrically alterable resistivity

A large variety of insulating materials shows resistive switching 
properties:

 Transition metal oxides (TMO)
 metal doped perovskites
 Polymers
 ...
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Switching behavior

Applying a proper potential difference at the two 
electrodes, the device resistance changes

Reset

Set
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Resistive switching mechanism in TMO

The anion motion leads to a 
valence change of the metal 
sublattice (cations)  R change

Filamentary type

R. Waser, Adv. Mater. 2009 and ref. therein; 
A. Sawa, Materials Today 2008

Mobile species:
Oxygen ions – oxygen vacancies

Initial state Forming

Reset Set
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 Very simple structure
 Highly scalable
 CMOS process compatibility
 Low switching time
 Low power consumption

Crossbar array

Resistive switching applications

Memory

Need for a lithographic
technology to enable cell scaling
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Resistive switching applications
Logic Artificial neural 

networks

Yang, J. Joshua, Dmitri B. Strukov, and Duncan 
R. Stewart. "Memristive devices for computing" 
Nature nanotechnology 8.1 (2012)
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Experimental results

Up to 2000 reproducible 
switching cycles demonstrated

Pt

TiN

ALD - HfO2

5 - 6 nm

40 μm

40 μm

Microscopic device 
characterization
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Possible to tune the low resistance 
varying the maximum allowed current 

during set (current compliance)
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Experimental results
Electrical characterization
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Possible to tune the high resistance 
varying the maximum reset voltage 
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• Two different retention behaviors

• Arrhenius dependence of the retention time on temperature
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Experimental results
Retention behavior

Retention behavior at 150°C
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Slow retention loss
• Modification of the residual 

filament
• The TiOxNy /HfO2 interface 

may play a role

Fast retention loss
• Very narrow gap.

Diffusion of a few vacancies 
can reconstruct the 
conductive channel
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No area dependence of the resistance

Device area dependence
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Previous works

ReRAM nanoscaling

Top-down

B. Govoreanu et al. 
IEEE Electron Devices
Meeting (2011)

Anodized-Aluminium Oxide templates

Bottom-up

D. Perego et al. 
Nanotechnology 24 

(2013)

Electron beam lithography

• Slow and serial 
lithographic technique
• Limited number of devices • Not compatible with actual 

technology
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Block Copolymers

Hexagonal cylinders template

Experimental result: block copolymers self 
assembling of hafnium dioxide
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Graphoepitaxy
M. Perego et al. Nanotechnology 24, 8 (2013)

Pre-patterned structures 
can be used to drive the 
self assembly of block 
copolymers Courtesy of F. Ferrarese Lupi, MDM IMM-CNR
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Top electrode nano patterning

Electrical measurements 
with c-AFM

Combining directed self-
assembling with electron beam 
lithography

Lift-off process
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Substrate: ALD – HfO2

Metal
Physical 

deposition
Thickness

Tungsten (W) sputtering 5 nm

Platinum (Pt)

sputtering 5 nm

ebeam 5 nm

Lift-off process study

Experimental result
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200 nm

We demonstrated the possibility to 
obtain nano scaled top Pt electrodes over 

large areas of HfO2

Experimental result
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Current activity

 Device characterization and
study of the retention behavior

 Implementing the block 
copolymer self-assembling on 
HfO2

 Study of the lift-off process for 
top electrodes nano patterning
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Future outlook

 Electrical characterization of the nano devices using C-AFM 
to inspect the physical properties at the nano scale

 Find alternative strategies for the fabrication of resistive 
switching devices using block copolymers self-assembly
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Initial state

 Fresh cell

Resistive switching mechanism
H. Akinaga and H. Shima, Proceedings of the IEEE 2010
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Soft breakdown

Initial state

GND

SET (forming)

On state
(Low resistance)

 Fresh cell
 Forming

V+

Resistive switching mechanism
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V-

GND

Off state
(High resistance)

RESET

 Fresh cell
 Forming
 Reset

On state
(Low resistance)

Resistive switching mechanism
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GND

Off state
(High resistance)
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On state
(Low resistance)

 Fresh cell
 Forming
 Reset
 Set

V+

Resistive switching mechanism
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V-

GND

GND

Off state
(High resistance)

SET (forming)

On state
(Low resistance)

RESET

 Fresh cell
 Forming
 Reset
 Set
 Many cycles

V+

Resistive switching mechanism
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X-ray photoemission spectroscopy
• TiO2/TiOxNy in serie with the HfO2 film
• Significant percentage of non-lattice oxide
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ITRS 2012 UPDATE - Winter Presentations
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Conduction in metal oxides

J. Joshua Yang et al., "Memristive devices for 
computing" Nature nanotechnology 8.1 (2012)


