

Nanoscale resistive switching devices based on metal oxides

Jacopo Frascaroli Supervisor Prof. Alberto Pullia Co-Supervisor Dr. Sabina Spiga

Outline

phenomenology and applications

Resistive switching in MIM structures

Capacitor-like structure with electrically alterable resistivity

A large variety of insulating materials shows resistive switching properties:

Milano, October 15th 2013

Switching behavior

Applying a proper potential difference at the two electrodes, the device resistance changes

Resistive switching mechanism in TMO

R. Waser, Adv. Mater. 2009 and ref. therein; A. Sawa, Materials Today 2008

The anion motion leads to a **valence change** of the metal sublattice (cations) \rightarrow R change

Mobile species: Oxygen ions – oxygen vacancies Initial state Forming Reset Set

Resistive switching applications

Memory

Resistive switching applications

Logic

Electrical characterization

- IMM Jacopo Frascaroli Laboratorio MDM

DI MILANO

Electrical characterization

Retention behavior

- Two different retention behaviors
- Arrhenius dependence of the retention time on temperature

Jacopo Frascaroli

DEGLI STUDI

Laboratorio MDM

DI MILANO

Retention modeling

- Slow retention loss
- Modification of the residual filament
- The TiO_xN_v/HfO_2 interface may play a role

Fast retention loss

 Very narrow gap. Diffusion of a few vacancies can reconstruct the conductive channel

J. Frascaroli et al., in preparation

Jacopo Frascaroli

DI MILANO

Laboratorio MDM

Retention modeling

Slow retention loss

- Modification of the residual filament
- The TiO_xN_v/HfO_2 interface may play a role

Fast retention loss

Very narrow gap. Diffusion of a few vacancies can reconstruct the conductive channel

J. Frascaroli et al., in preparation

Device area dependence

Filamentary conduction No area dependence of the resistance High scalability potential Ŧ 10⁴ R (Ω) 10³ RHI RLOW 10² 10⁻³ 10⁻⁴ 10⁻⁵ Area (cm²)

Previous works

• Limited number of devices

Not compatible with actual technology

Block Copolymers

Hexagonal cylinders template

Experimental result: block copolymers self assembling of hafnium dioxide

Graphoepitaxy

M. Perego et al. Nanotechnology 24, 8 (2013)

Pre-patterned structures can be used to drive the self assembly of block copolymers

Courtesy of F. Ferrarese Lupi, MDM IMM-CNR

Top electrode nano patterning

Lift-off process

Electrical measurements with c-AFM

Combining directed selfassembling with electron beam lithography

UNIVERSITÀ DEGLI STUDI

DI MILANO

Milano, October 15th 2013

Lift-off process study

Substrate: ALD – HfO ₂								
Metal	Physical deposition	Thickness						
Tungsten (W)	sputtering	5 nm						
Distinum (Dt)	sputtering	5 nm						
Platinum (Pt)	ebeam	5 nm						

We demonstrated the possibility to obtain nano scaled top Pt electrodes over large areas of HfO₂

<u>00 nm</u>

UNIVERSITÀ DEGLI STUDI

DI MILANO

Current activity

- Device characterization and study of the retention behavior
- Implementing the block copolymer self-assembling on HfO₂
- Study of the lift-off process for top electrodes nano patterning

Future outlook

Electrical characterization of the nano devices using C-AFM to inspect the physical properties at the nano scale

Find alternative strategies for the fabrication of resistive switching devices using block copolymers self-assembly

H. Akinaga and H. Shima, Proceedings of the IEEE 2010

Initial state

Milano, October 15th 2013

Metal/Oxide interface

X-ray photoemission spectroscopy

- TiO_2/TiO_xN_y in serie with the HfO₂ film
- Significant percentage of non-lattice oxide

ITRS 2012 UPDATE - Winter Presentations

	Prototy	ypical (Table	ERD3)	Emerging (Table ERD5)					
Parameter	FeRAM	STT-MRAM	PCRAM	Emerging ferroelectric memory	Nanomechan Ical memory	Redox memory	Mott Memory	Macromolec ular memory	Molecular Memory
Scalability	:			•••			?	?	•
MLC	•••		$\overline{}$?		
3D integration	•		••		•		?		
Fabrication cost	••		•••	•••			?		?
Endurance	\bigcirc	\mathbf{C}	••						?

Conduction in metal oxides

