Search of supersimmetry signature with photons in the finale state with the ATLAS detector

Stefano Manzoni INFN - Sezione di Milano, LPNHE - Paris

Corso di Dottorato in Fisica, Astrofisica e Fisica Applicata - Workshop 2015 Milano, 12^{th} October 2015

- Introduction
- Photon Physics
- Analysis details
- Previous Results and prospect

・ロト ・回ト ・ヨト

We found the Higgs...

2012 Discover of a particle compatible with the Higgs predicted by the SM (H $\rightarrow \gamma\gamma$, H $\rightarrow ZZ^* \rightarrow 4\ell$)

2013 Run 1
$$\sqrt{s} = 8(7)$$
 TeV and $L = 20.3(4.5)$ fb⁻¹:

- $\rightarrow \nu \nu \nu \nu$, II-
- spin-0 nature
- almost right couplings

2012 Discover of a particle compatible with the Higgs predicted by the SM (H $\rightarrow \gamma\gamma$, H $\rightarrow ZZ^* \rightarrow 4\ell$)

2013 Run 1
$$\sqrt{s} = 8(7)$$
 TeV and $L = 20.3(4.5)$ fb⁻¹:

- H $\rightarrow WW^* \rightarrow \ell \nu \ell \nu$, H $\rightarrow \tau \tau$
- spin-0 nature
- almost right couplings

 \rightarrow We found the Higgs: $m_H = 125.09 \pm 0.21(stat.) \pm 0.11(syst.)$ GeV

2012 Discover of a particle compatible with the Higgs predicted by the SM (H $\rightarrow \gamma\gamma$, H $\rightarrow ZZ^* \rightarrow 4\ell$)

- 2013 Run 1 $\sqrt{s} = 8(7)$ TeV and L = 20.3(4.5) fb⁻¹:
 - H $\rightarrow WW^* \rightarrow \ell \nu \ell \nu$, H $\rightarrow \tau \tau$
 - spin-0 nature
 - almost right couplings
 - \rightarrow We found the Higgs: $m_H = 125.09 \pm 0.21(stat.) \pm 0.11(syst.)$ GeV
 - $\rightarrow\,$ SM: solid and robust theory

- Critical points for the SM theoretical structure:
 - Dark matter

э

イロト イポト イヨト イヨト

- Critical points for the SM theoretical structure:
 - Dark matter
 - Higgs/Hierarchy problem

イロン イロン イヨン イ

- Critical points for the SM theoretical structure:
 - Dark matter
 - Higgs/Hierarchy problem
 - Unification of coupling constants

- Critical points for the SM theoretical structure:
 - Dark matter
 - Higgs/Hierarchy problem
 - Unification of coupling constants

・ロト ・回ト ・ヨト

- Critical points for the SM theoretical structure:
 - Dark matter
 - Higgs/Hierarchy problem
 - Unification of coupling constants
 - Neutrino masses

・ロト ・回ト ・ヨト ・

- Critical points for the SM theoretical structure:
 - Dark matter
 - Higgs/Hierarchy problem
 - Unification of coupling constants
 - Neutrino masses
 - ...

<ロ> (四) (四) (三) (三)

• Critical points for the SM theoretical structure:

• ATLAS RUN 2:

- $\rightarrow\,$ stress the SM with precise measurement
- $\rightarrow\,$ search for new phenomena: BSM theory

• Supersimmetry:

- new bosonic field to each SM fermion
- new fermionic field to each SM gauge boson
- $\rightarrow\,$ Solve the Higgs/hierarchy problem
- $\rightarrow\,$ In Susy the unification of the coupling costants is far more precise
- → Dark matter: LSP SUSY particle (with R-parity conservation)

A = A = A = A
 A
 A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Search for a signal from GGM models
 - LSP Gravitino
 - NLSP Neutralino
- Two processes identified with $\gamma\gamma + E_T^{miss}$ final state:
 - Strong production
 - gluinos→Neutralinos (binolike)+jets→photons+Gravitinos+jets
 - Electroweak production
 - wino triplet→neutralinos+gaugebosons→photons+Gravitinos
- The mass of the neutralino is treated as a free parameter $m_{\tilde{\chi}_1^0} = (0 \text{ GeV}, m_{\tilde{g}}/m_{(\tilde{\chi}_1^{\pm 1}, \tilde{\chi}_1^0)})$

• Prompt decay
$${ ilde \chi}^{0}_{1} o { ilde G}\gamma$$
 ($c au < 0.1$ mm)

Photon Identification and reconstruction

• Photon Reconstruction:

- Energy deposit in the electromagnetic calorimeter
- Tracks to determine if the candidate is an electron or converted/unconverted photon

• Photon Identification:

- Energy leakage in the hadronic calorimeter
- Shower shapes in the three layer of EM calorimeter
- Isolation: further discrimination between jets and photons: Isolation
 - energy around the candidate in a cone $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$
 - $\rightarrow\,$ jets faking a photons have lots of other particles around it

• Goal: $E_{reco} \rightarrow E_{true}$

- My qualification task: training the MVA calibration (1)
 - Monte Carlo based
 - advantages:
 - · easiness to derive a new set of correction
 - take into account the correlation between the inputs

(ロ) (四) (三) (三)

- Cut and count analysis:
 - Signal Region optimisation
 - Background evaluation:
 - SM contribution
 - Evaluation in Control Region (orthogonal to SR) with data-driven/MC methods
 - Validation Region
 - Statistical comparison of Expected (bkg) events vs. Observed

- Event selection:
 - Two tight and isolated photons
 - Event Cleaning (jet cleaning, cosmic muon cleaning)
- \rightarrow Inclusive signature: no explicit requests on jets, leptons
 - Four Signal Regions optimised:
 - Two for strong production (SH, SL)
 - $m(\tilde{g}, \tilde{\chi}_{1}^{0})(1500, 1300)$ GeV and (1500, 100) GeV
 - Two for ew production (WH, WL)
 - m($\tilde{\chi}_1^{\pm 1} / \tilde{\chi}_2^0, \tilde{\chi}_1^0$) (600, 500) GeV and (600, 100) GeV.
 - Using variables:
 - p_T^{γ}
 - E_T^{miss} , $\Delta \phi(\gamma, E_T^{miss})$, $\Delta \phi(jet, E_T^{miss})$
 - H_T (=total transverse energy of all visible objects)
 - m_{eff} (scalar sum of H_T and E_T^{miss})

Stefano Manzoni (INFN-MI, LPNHE-Paris)

CERN-PH-EP-2015-168

- QCD background:
 - Instrumental E_T^{miss}
 - SM $\gamma\gamma$, $\gamma+jet$
 - QCD sample \rightarrow normalised in a control region at low E_T^{miss}
 - $\gamma\gamma$: di-photon MC sample
 - γ +jet: pseudo-photon control sample
- EW background
 - Genuine E_T^{miss}
 - W+ γ (W \rightarrow e ν), Z+ γ (Z \rightarrow $\tau^{+}\tau^{-}$), $t\bar{t}$ + γ (t \rightarrow be ν)
 - · electron faking photon rate from data
- Irreducible background:
 - Finale state identical to the searched signal
 - Z+ $\gamma\gamma$ (Z $\rightarrow \nu\nu$), W+ $\gamma\gamma$ (W $\rightarrow e\nu$)
 - Evaluated using MC normalised in a control region

(日) (同) (三) (三)

Signal region	$N_{\rm obs}$	$N_{\text{exp}}^{\text{SM}}$	$S_{ m obs}^{95}$	$\langle \epsilon \sigma \rangle_{\rm obs}^{95} [{\rm fb}]$
$SR_{S-L}^{\gamma\gamma}$	0	$0.06^{+0.24}_{-0.03}$	3.0	0.15
$SR_{S-H}^{\gamma\gamma}$	0	$0.06^{+0.24}_{-0.04}$	3.0	0.15
$SR_{W-L}^{\gamma\gamma}$	5	$2.04^{+0.82}_{-0.75}$	8.2	0.41
$SR_{W-H}^{\gamma\gamma}$	1	$1.01\substack{+0.48\\-0.42}$	3.7	0.18

- No statistically significant deviation from the SM is observed
- For each signal region 95% CL upper limit is set on the visible cross section:
 - SL (SH) 0.15 (0.15) fb
 - WL (WH) 0.25 (0.18) fb
- 95% CL lower limits are set on
 - $m_{\tilde{g}}$ at 1290 GeV (at $-1\sigma_{Theory}^{SUSY}$)
 - $m_{(\tilde{\chi}_1^{\pm 1}, \tilde{\chi}_2^0)}$ at 590 GeV (at -1 σ_{Theory}^{SUSY})

Run 2 Prospect

• Run2:

```
• \sqrt{s} \rightarrow 13 \text{ TeV}
• \int \mathcal{L} dt \ 100 \text{ fb}^{-1} \text{ (expected)}
```


- Considering a single signal point, gluino with mass 1400 GeV, just above the 8 TeV exclusion limit:
 - Signal: $\sigma(13 TeV) / \sigma(8 TeV) \sim 30$
 - Background: $\sigma(13 TeV)/\sigma(8 TeV) \sim 2-3$
 - $S/\sqrt{B} \sim 20$ times bigger than at 8 TeV (at the same L)
- The sensitivity of the 8 TeV analysis will be reached with L=1-2 fb⁻¹ at 13 TeV

Stay tuned!

<ロ> <四> <四> <四> <三</p>