

Daniele Marangotto (INFN & UNIMI)

PhD Workshop

Outline

- Introduction & motivation
- Charm baryon EDM experiment proposal
- My first year work
- Preparatory measurements at LHCb
- My next two years work

- (E

Electric dipole moment (EDM)

- Classical definition $\delta = \int \mathbf{r} \rho(\mathbf{r}) d^3 r$
- Quantum systems: δ must be proportional to **s**, the only vector describing the particle

$$oldsymbol{\delta} = oldsymbol{d} rac{\mu_{\mathcal{B}}}{\hbar} oldsymbol{s}$$

- Parity: $\mathcal{P}\delta = -\delta$ but $\mathcal{P}\mathbf{s} = +\mathbf{s}$
- Time reversal: $\mathcal{T}\delta = +\delta$ but $\mathcal{T}s = -s$
- An EDM violates \mathcal{P} and \mathcal{T} , thus CP symmetry for CPT theorem
- The EDM, together with the magnetic dipole moment μ = g^{μ_B}/_ħs, drives the particle spin precession in electromagnetic (EM) fields

イロト イポト イヨト イヨト

EDM as probe of new physics

- Standard model EDMs practically zero, but enhanced in many beyond the SM (BSM) physics scenarios
- BSM CP-violation sources needed to explain baryogenesis, the matter-antimatter asymmetry observed in our Universe
- EDMs being probed in different systems: leptons, nucleons, nuclei, atoms, and Λ baryon
- Charm baryon EDMs never measured so far; only weak indirect limits from other measurements available

Experiment concept

- Source of polarized charm baryons
- Selected from *p*-nucleus collisions, with polarization orthogonal to the p- Λ_c^+ production plane for parity symmetry in strong interactions

- Intense EM field enough to induce significant spin precession before the baryon decay
- \rightarrow Exploit the interatomic electric field $E \approx 10^{11} eV/m$ of a bent crystal
- Derived spin evolution equations in which EDM effects are treated as small corrections to the MDM induced precession

Daniele Marangotto (INFN & UNIMI)

PhD Workshop

Particle channeling in bent crystals

- Positive particles can be trapped between crystal atomic planes, acting as potential barriers
- In bent crystals channeled particles are deflected by following planar channels
- The electric field deflecting the particle, providing the centripetal force, produce the desired spin precession

Daniele Marangotto (INFN & UNIMI)

Charm baryons spin precession

• Spin after channeling along the crystal with deflection angle θ_C

- Main MDM precession in the bending plane, the EDM producing an orthogonal spin component otherwise not present
- Spin precession proportional to $\gamma \theta_C$: need high momentum baryons and high crystal bending angle
- Measurement of the charm baryon polarization after channeling by studying the angular distribution of their decays, reconstructed with the LHCb detector

Daniele Marangotto (INFN & UNIMI)

イロト 不得 トイヨト イヨト 二 ヨ

Charm baryons EDM experiment layout

- A first bent crystal is used to extract protons from the LHC beam halo
- Directed on a target attached to a second bent crystal for spin precession
- Charm baryons are deflected inside the LHCb experiment acceptance
- Non-interacting protons follow the beampipe to be absorbed after LHCb

EDM sensitivity

- Experimental layout and sensitivity estimate done for LHCb upgraded for LHC Run 3 (2020-2022)
- Precision dominated by statistics: limited by channeling probability ($\approx 10^{-3}$) and detector reconstruction efficiency ($\approx 5\%$)
- The first measurement of charm baryon (Λ_c^+, Ξ_c^+) EDMs and MDMs should be possible at 10^{-17} *e cm* order
- Value not excluded by current theoretical indirect limits, at $10^{-17} 10^{-15} e cm$ level

イロト 不得 トイヨト イヨト 二日

Status of the proposal

- Selected among the new fixed-target initiatives under evaluation by the LHCb management
- Presented at the "Low-energy probes of new physics" workshop
- One published paper (Eur. Phys. J. C 77 (2017) 181) and one submitted to EPJC (arXiv:1708.08483)
- Simulation studies reported in the LHCb internal note LHCb-INT-2017-011

ヨトイヨト

Preparatory measurements

- The sensitivity to the charm baryon EDM depends on some quantities which at present are poorly known
- The parameters relating the polarization to the angular distribution of charm baryon decays, in particular of the main decay channel $\Lambda_c^+ \rightarrow \rho K^- \pi^+$
- For quasi two-body decays, e.g. $\Lambda_c^+ o \Delta^{++} (o p \pi^+) K^-$

$$rac{dN}{d\Omega'} \propto 1 + lpha \mathbf{s} \cdot \hat{\mathbf{k}}$$

- Polarization of charm baryon produced in fixed-target collisions
- But, they can be measured at LHCb!

イロト イポト イヨト 一日

Charm baryon amplitude fit

- LHCb has recorded order 1M $\Lambda_c^+ \to p K^- \pi^+$ events from pp collisions
- This allows to perform a precise study of the decay structure by means of an amplitude fit
- Measurement of the contribution of resonances and non-resonant components
- Development the decay model needed for polarization measurement and useful for simulation purposes
- Search for local *CP*-violation in the phase-space at very high precision, comparing Λ_c^+ and $\overline{\Lambda}_c^-$ decays

Amplitude fit framework applicable to other baryon decays

Daniele Marangotto (INFN & UNIMI)

PhD Workshop

Charm baryon polarization in fixed-target collisions

- LHCb has developed SMOG, an internal gas target for luminosity measurement
- Indeed, it is a fixed-target experiment, and LHCb has already recorded a few hundreds charm baryon decays from *p*-gas collisions
- With the next SMOG run ×10 events are expected
- Using the decay model fit from pp collision events it is possible to measure charm baryon polarization with a few percent precision

イロト イポト イヨト イヨト

 Baryon polarization measurements also interesting as benchmark for low-energy QCD models

Daniele Marangotto (INFN & UNIMI)

PhD Workshop

11/10/2017 13 / 28

Summary

- A proposal for the first measurement of charm baryons EDM at 10⁻¹⁷ e cm precision
- A new physics search complementary but not overlapping to others
- Need installation of a fixed-target + bent crystal device in LHCb
- Preparatory measurements are needed to better understand the experiment feasibility and sensitivity
- Amplitude fit of charm baryon decays for polarization measurement
- Charm baryon polarization in fixed-target collisions
- Measurements already possible with current LHCb dataset

★ Ξ > < Ξ >

Thank you for your attention!

Daniele Marangotto (INFN & UNIMI)

PhD Workshop

11/10/2017 15 / 28

Backup Slides

Daniele Marangotto (INFN & UNIMI)

PhD Workshop

11/10/2017 16 / 28

< ∃ ►

LHCb detector

Bent crystals

- Particle deflection using bent crystal is a well understood phenomenon
- R&D for LHC proton collimation system (UA9 collaboration)
- Measurement of Σ⁺ MDM exploiting spin precession in a bent crystal performed at Fermilab (PRL 69 (1992) 3286)
- Two materials to build bent crystal technologically available
- Ge: Better channeling efficiency, having higher Z thus higher electric potential walls
- Si: Technologically better understood, cheaper
- Spin precession angle proportional to the crystal bending angle
- Need long crystals (5-10 cm) with high curvature (\approx 10 mrad)

イロト イポト イヨト イヨト 一日

Bent crystals

Two main production mechanisms (R&D at INFN Ferrara)

1) Anticlastic deformation

- Bending of the crystal exploits anticlastic deformation
- A mechanical bending device is needed

2) Self bent crystals

- Curvature generated by deposition and patterning of a thin (100 nm) silicon nitride layer

Image: A matrix

(4) ヨト (4) ヨト

Charm baryons final polarization

- Extraction of the charm baryon polarization after channeling by studying the angular distribution of Λ_c^+ , Ξ_c^+ decays to $pK^-\pi^+$ final states.
- Possibility to study decays to narrow strong resonances, e.g. $\Lambda_c^+ \rightarrow \Delta^{++} (\rightarrow p \pi^+) K^-$, with simple two-body angular distribution

$$rac{dN}{d\Omega'} \propto \mathbf{1} + lpha \mathbf{s} \cdot \hat{\mathbf{k}}$$

- Possibility to study the full 3-body decay angular distribution via phase-space analysis, complex but allowing best precision on charm baryon polarization components
- Spin precession angle depending on Lorentz boost: angular distribution depending on γ as parameter

イロト イポト イヨト イヨト 二日

- Very simple study, aiming at charm baryon EDM order of magnitude
- The details of the experiment layout are under study
- g 2, initial polarization and α parameters for charm baryons very poorly known to date
- g 2, initial polarization to be measured by the proposed experiment, α parameters measurable at LHCb
- Crystal parameters thus not optimized to the expected charm baryon momentum distribution
- Considered $\gamma =$ 1000 ($\approx 2\,{\rm TeV})$ as typical energy of channeled charm baryons
- Considered a 10 cm long crystal bent at 10 mrad

<ロト < 同ト < 回ト < 回ト = 三日 - 三日 -

• Frequency of (e.g.) Λ_c^+ baryons produced

$$rac{dN_{\Lambda_c^+}}{dt} = F rac{N_T}{A} \sigma(pp o \Lambda_c^+ X)$$

- Proton flux on target $F \approx 5 \times 10^8/s$ according to LHC proton extraction studies using bent crystals (AFTER@LHC proposal)
- Areal density of target nucleons $\frac{N_T}{A}$ depending on target properties: chosen a 5 mm W target
- Frequency of channeled and reconstructed Λ_c^+ baryons

$$rac{dN_{\Lambda_c^+}^{
m reco}}{dt} = rac{dN_{\Lambda_c^+}}{dt} \mathcal{B}(\Lambda_c^+ o
ho K^- \pi^+) arepsilon_{TOT}$$

- Different contributions to the total efficiency $arepsilon_{TOT} \sim 10^{-5}$
- x Channeling acceptance $\sim 10^{-3}$
- Particles channeled only if aligned to the planar channel within order of $\mu {\rm rad}$
- Boosted particles emitted within a cone of 1/ $\gamma \approx$ 1 mrad
- **x** Particle decaying before the crystal end $\approx 20/50\% (\Lambda_c^+/\Xi_c)$
- **x** Detector reconstruction efficiency $\approx 5\%$

イロト 不得 トイヨト イヨト 二日

EDM uncertainty dominated by available statistics

$$\sigma_{d} pprox rac{g-2}{lpha s_{0} \left(\cos \Phi - 1
ight)} rac{1}{\sqrt{N_{A_{c}^{ ext{rec}}}^{ ext{rec}}}}$$

• Considering one month of data-taking:

• Precision on Λ_c^+ EDM at

$$\sigma(\pmb{\delta}) \sim 10^{-17}~e~cm$$

Precision on \(\approx_c^+\) EDM worse by a factor 3/2 due to lower production ratio

Complementarity of EDM searches

- EDM searches in different systems sensitive to different CPV sources, useful to disentangle the contribution of underlying CPV operators. that may have varying new physics enhancements.
- Many new physics models predict EDM enhancements for different systems

Baryon EDM

- A baryon EDM δ(B) can arise from a collective CPV interaction of its constituting quark and gluon fields with the EM field
- Described by 5 CPV operators in an effective Lagrangian scheme:

Baryon EDM

- θ-QCD term heavily constrained by the neutron EDM limit, absent if Peccei-Quinn symmetry is assumed
- Dimension-six gCEDM and 4 quark operators suppressed at baryon energy scale \approx 1 ${\rm GeV}$
- $ightarrow \, \delta(B)$ dominated by constituent quark EDM and CEDM operators
 - Structure of Λ baryon similar to the neutron, since $m(s) \ll m(\Lambda)$
 - Neutron EDM limit constrains directly u, d quark EDM, less sensitive to s quark EDM
 - Indirect limit from neutron EDM is $\lesssim 10^{-23} e cm$ (PLB **291** (1992) 293), still beyond this proposal capabilities
 - Of course this does not mean this measurement useless...

イロト イポト イヨト イヨト 二日

Charm baryon EDM

- Structure of charm baryons very different from the neutron, being $m(c) \sim m(\Lambda_c^+)$
- The dominance of the heavy charm quark suggests $\delta(B_c) \approx \delta(c)$ (e.g. PRD **56** (1997) 7273 for charm MDM calculation)
- $\delta(B_c)$ dominated by charm qEDM and qCEDM operators
- Indirect, model-dependent, weak bounds on charm baryon EDMs have been extracted from observables containing qEDM and qCEDM couplings
- Neutron and electron EDM limits, $\sigma(e^+e^- \rightarrow c\bar{c})$, $\Gamma(Z^0 \rightarrow c\bar{c})$, $\mathcal{B}(B \rightarrow X_s \gamma)$ (e.g. JHEP **03** (2014) 061, NPB **821** (2009) 285)
- For charmed baryons $|\delta(B_c)| < 10^{-17} 10^{15}$ *e cm*, challengeable by this proposal

イロト イポト イヨト イヨト 二日