

SEARCH FOR EXTRA DIMENSIONS IN THE DI-PHOTON CHANNEL AT THE ATLAS EXPERIMENT AT LHC

Simone Michele Mazza – Dp. of physics, university of Milan

- ATLAS (A Toroidal LHC ApparatuS)
 - 44 m long, 25 m of diameter
 - 4 levels of detectors
 - Inner detector
 - Electromagnetic calorimeter
 - Hadron calorimeter
 - Muon detectors
- Three levels of trigger, recordable events/s ~400
 - Trigger level one (hardware)
 - Trigger level two (software)
 - Event filter
- Object detection based on combination of the detectors' information
 - Object reconstruction
 - Canditades
 - Object identification
 - Photons, electrons, jets etc...

HOW TO GET FROM THIS TO THIS?

- Let me introduce the hierarchy problem
 - There is a large discrepancy between the strong/electroweak force and gravity
 - Why is that so?

EXTRA DIMENSIONS, SIMONE MAZZA

17/11/2014

RS AND ADD MODEL

- SM particles are confined in 3-dimension while gravitons can also travel in the additional dimensions
 - Gravity is weak because we can only measure a projection
- There are two theories trying to explain this asimmetry
 - RS model: there is a <u>fourth dimension</u> that is <u>compactified</u> in a <u>warped geometry space</u>

•
$$M_d = M_{pl} e^{-k\pi r}$$

• ADD: there are <u>*n* additional compactified dimensions</u>

•
$$M_d^{n+2} = M_{pl}^{n+2} R^{-n}$$

• How can we prove this?

RS AND ADD MODEL

- In particle colliders we can <u>produce and observe the decay of a</u> <u>graviton</u>
 - My analysis tries to detect the Kaluza Klein resonances of the graviton in the additional dimensions in the decay channel with two photons
- Two free parameters
 - Mass of the graviton Mg and coupling k with the SM
- Not an easy analysis:
 - must recognize real diphoton events from <u>reducible</u> <u>background</u> (gamma-jet, dijet) and <u>irreducible background</u>
- Even if we observe a resonance a spin analysis will be needed (could be a Z')

Studying the di-photon invariant mass RS signature: resonances ADD signature: non-resonant excess

RESULTS UNTIL NOW - EXCLUSIONS

BUT WHO KNOWS WHAT WE'LL FIND IN THE NEXT RUN!?

EXTRA DIMENSIONS, SIMONE MAZZA

17/11/2014

PREPARING FOR 13 TEV RUN

- Prepare data derivation
- Write analysis
 - Most of the performance tools (photon id, isolation, photon calibration) are work in progress → I'm giving a hand here
- Analyze MC of signal and fit signal model
- Study the background distribution (also from MC) ← I'm around here
- Study systematic errors
- Write Statistics code
- Prepare first projections for 13 TeV run
- Wait for data (May 2015) ...
 - Probably L int = 15 fb⁻¹ ready for summer (almost the same L int of the whole past run) with 13 TeV of center of mass energy

LOTS OF BROTHERS IN THE EXOTICS GROUP!

<u>Maybe there is already a sign of a W'!!!</u> \rightarrow <u>http://arxiv.org/abs/1405.1994</u> (ATLAS paper coming soon)

EXTRA DIMENSIONS, SIMONE MAZZA

DATA DERIVATION IN ATLAS FOR 14 TEV RUN

- Datasets are HUGE: very important to reduce the size before analyze it in the home institute
 - Keep only certain events and only part of the informations
 - I wrote and currently supporting the derivation for the di-photon exotics group

17/11/2014

PHOTON RECONSTRUCTION AND IDENTIFICATION IN ATLAS

- Photons reconstruction
 - From energy deposits in the electromagnetic calorimeter <u>with sliding window algorithm</u>
 - Tracks to determine if the candidate is *electron* or photon converted/unconverted
- Photon identification based on discriminating variables
 - <u>Energy leakage</u> in the hadronic calorimeter
 - <u>Shower shapes</u> in the three compartment of the EM calorimeter
- Two sets of cuts for identification:
 - Loose: leakage + second compartment shower shapes
 - Tight: loose + shower shapes in first compartmentcommeter
- Isolation variable: energy deposits around the photon

Spectromete

Tracking

Pri ton

Pixel/SC

Neutron

ISOLATION VARIABLE

- After the photon identification, how to further identify a real photon from a Jet (or a jet with a prompt (leading) photon?)
 - A Jet faking a photon have lots of other particles around it
- Isolation variable
 - Energy of the *topoclusters* in a cone in the calorimeter of $\Delta R = \sqrt{(\Delta \phi^2 + \Delta \eta^2)} = 0.4$ (or 0.2, 0.3) without the central cells (5x7)
 - Corrected for the object energy leakage and pileup/underlying event
 - <u>These corrections are not ready at the moment for the 13 TeV run</u>
 - Apply a cut (in the 8 TeV analysis < 6 GeV) on this quantity

ISOLATION PT LEAKAGE CORRECTIONS

- Currently working in the isolation correction tool
 - Corrections for pt leakage of the e/gamma object outside the 5x7 core
- Analyze a huge dataset of single particle photon and electron (~ 3 Tb)
 - Only one photon without pileup
 - to get the distribution of topoclusters energy in the cone, that is completely from pt leakage, vs the photon Et
 - Fit the 2D distribution of Et and topoEtcone in η bins to get the median leakage of the e/gamma object
 - <u>Get the correction factor as a function of (Et, η)</u> and apply it to data/MC in the analysis
- Next step: get pileup corrections

SELECTION OF EVENTS WITH TWO PHOTONS

- Selection for two well reconstructed and isolated photons
 - Pass trigger with 2 photons (E_T of 25,35 GeV)
 - Pass event selection
 - GRL, event cleaning
 - At least one primary vertex must be reconstructed with two tracks
- Pre-selection: At least two loosely identified photons
 - Within $|\eta| < 2.37$, $E_T > 25$ GeV
 - Passing loose ID criteria
- Define leading, sub-leading photons (most energetic)
 - Leading photon with ET > 40 GeV
 - Sub-leading photon with ET > 30 GeV
 - Pass tight cut criteria and <u>isolation</u> (calorimeter and tracks)
- Invariant mass of the two photons
 - O angle between photons

$$m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos(\theta))}$$

SYSTEMATICS, SIGNAL AND BACKGROUND MODEL

- Study of the systematic errors
 - Impact on event selection, kinematic variables
 - On photon calibration, isolation, photon identification ...
- Using this selection we can re-create the distribution of Mγγ of MC signal samples
 - Samples of <u>signal of gravitons</u> with different Masses and couplings
 - Fit an analytic function to the signal distribution
- Study the Mγγ of the <u>background distribution</u>
 - choosing the best analytic function to describe it
 - Fit the chosen background function on data outside the signal region (ex: $M\gamma\gamma < 1$ TeV)

SIGNAL FIT AND BACKGROUND - PRELIMINARY

- Signal model (MC): BreitWiegner + Gaussian
 - A RooPlot of "m_{yy}"

$$x^{k_1 \times (1 - \log(x))} \times x^{k_2 \times \log(x)} \times \left(1 - \frac{1}{1 + e^{(x - k_3)/k_4}}\right)$$

EXTRA DIMENSIONS, SIMONE MAZZA

PRELIMINARY RESULTS

EXTRA DIMENSIONS, SIMONE MAZZA

EXTRAPOLATE STATISTIC RESULTS

- Analyze data and study the distribution
 - Now we have a complete model: signal model * signal strength + background model
 - Compare the model with the observed data using powerful statistic tools

$$E[n_i] = \mu s_i + b_i ,$$

$$s_i = s_{\text{tot}} \int_{\text{bin}\,i} f_s(x;\boldsymbol{\theta}_s) \, dx ,$$

$$b_i = b_{\text{tot}} \int_{\text{bin}\,i} f_b(x;\boldsymbol{\theta}_b) \, dx .$$

$$L(\mu,\boldsymbol{\theta}) = \prod_{j=1}^N \frac{(\mu s_j + b_j)^{n_j}}{n_j!} e^{-(\mu s_j + b_j)} \prod_{k=1}^M \frac{u_k^{m_k}}{m_k!} e^{-u_k} .$$

$$\tilde{\lambda}(\mu) = \begin{cases} \frac{L(\mu,\hat{\theta}(\mu))}{L(\hat{\mu},\hat{\theta})} & \hat{\mu} \ge 0, \\ \frac{L(\mu,\hat{\theta}(\mu))}{L(0,\hat{\theta}(0))} & \hat{\mu} < 0 \end{cases}$$

- From λ we can find the q_µ (exclusion) and p₀ (discovery)
 - Exclude the theory (Mg, k) within 2 σ of CL ...
 - Or discover an excess from the expected SM background over 3-5 σ of CL

13 TEV PROJECTIONS FOR 100 FB⁻¹ (COURTESY OF GRENOBLE)

MAYBE A SIGNAL WILL SHOW UP?

$\xrightarrow{\text{Conclusions}} \rightarrow \text{FUTURE PLANS}$

- Preparation for run 2 data analysis is progressing
 - Performance tool
 - Systematics
 - Statistic
- I am doing my best to meet the data taking re-start
- Looking forward to run2!
- ...
- <u>Thank you for your time!</u>

BACKUPS

LHC EXPERIMENT AT CERN

- LHC is a proton-proton collider 27Km long
 - 4 main experiments
 - ATLAS, CMS, ALICE, LHCb
- Current center of mass energy √s=8TeV
 - Superconducting magnets 8 T
 - 29fb⁻¹ delivered
 - Luminosity peak of 8x10³³cm⁻²s⁻¹
 - Bunch spacing: 25ns
- Now in shutdown
 - Will re-open in 2015 with 14 TeV of center of mass energy

AD Antiproton Decelerator CTF3 Clic Test Facility CNGS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight

ATLAS COORDINATES SYSTEM

- Coordinates are with Z on the beam axis
 - X,Y is the transverse plane
 - Cylinder coordinates are adopted (z, θ , ϕ)
- Usually the adopted angular coordinates are (η, ϕ) [η instead of θ]
 - η=-log(tan(θ/2)) invariant for Lorentz boost on Z
 - $\Delta R = \sqrt{(\eta^2 + \phi^2)}$ angular distance between two objects

ATLAS DETECTOR STRUCTURE

Measure position and energy for particles > electrons, photons and hadrons

> Electromagnetic calorimeter and Hadronic calorimeter

➢Barrel + endcap structure (covering different n regions)

Cathode strip chambers (CSC)

Resistive-plate

End-cap toroid

chambers (RPC)

Barrel toroid

Inner detector

- \succ 7 m long, 2.3 m diameter
- ► Measure tracks for charged partices
- Detect primary and secondary vertices
- ➤Three layers
 - Semiconductor pixel detectors
 - Silicon microstrip detector
 - ➤ Radiation transition detector

Muon detector

- Outest and largest detector
- >Drift tubes in the central region, cathode strip chambers in the forward region
- >Muon trigger: resistive plate chambers and thin gap chambers

EGLI STUDI DI

Thin-gap chambers (TGC)

Calorimeters

PHOTON IDENTIFICATION EFFICIENCY DI-PHOTON COMPOSITION

ATLAS INNER DETECTOR AND ELECTROMAGNETIC CALORIMETER

Inner detector

- Measure charged particles tracks
- Detect primary and secondary vertices
- Three levels
 - Semiconductor pixel detectors (±10 µm)
 - Silicon microstrip detectors (±16 µm)
 - Radiation transition detector (±30 µm)

- Electromagnetic calorimeter
 - Detect photons, electrons
 - Sampling calorimeter of Liquid Argon /Pb
 - Covers pseudorapidy region of |n|<3.2
 - Electrodes and absorbers are bend in a accordion way

 $\frac{\sigma}{E} = \frac{10 - 17\%}{\sqrt{E/\text{GeV}}} \oplus 0.7\%$

- Segmented in three longitudinal segments with different glanularity
- Resolution:

Hadronic calorimeter

- Detect Jets
- Sampling calorimeter of scintillating tiles and Steel
- Covers pseudorapidy region of |η|<4.9
- ~11 interaction length
- Granularity: (ηxΦ)=0.1x0.1
- Resolution:

$$\frac{\sigma}{E} = \frac{50 - 100\%}{\sqrt{E / \text{GeV}}} \oplus 0.3 - 0.5\%$$

Layer	lenght	Segmentation (ηxΦ)
Presampler	< 1 X ₀	0.025x0.1, for η <1.8
Strips	~5 X0	(0.003 - 0.006)x0.1
Middle	~15 X0	0.025x0.025
Back	~3-4 X0	0.050x0.025