

Measurement of matter-antimatter differences in beauty baryon decays Ardree Merli (Universite degli Studi di Milano NFN Milano)

Supervisor: Nicola Neri

PhD Seminar – End of first year

20/10/2016

• CP violation (CPV) necessary condition for baryogenesis

- Matter ≠ Antimatter
- CKM mechanism introduced in the Standard Model to include *CPV*

- Matter ≠ Antimatter
- CKM mechanism introduced in the Standard Model to include *CPV*

$$V_{CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3 \left[1 - \left(1 - \frac{\lambda^2}{2} \right) (\rho + i\eta) \right] & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = V_{\rm CKM} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$
weak eigenstates mass eigenstates

- Matter ≠ Antimatter
- CKM mechanism introduced in the Standard Model to include *CPV*

$$V_{CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda \\ -\lambda & 1 - \frac{\lambda^2}{2} \\ A\lambda^3 \left[1 - \left(1 - \frac{\lambda^2}{2} \right) (\rho + i\eta) \right] & -A\lambda^2 \\ A\lambda^3 \left[1 - \left(1 - \frac{\lambda^2}{2} \right) (\rho + i\eta) \right] & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$
No phases \Longrightarrow no *CPV*

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = V_{\rm CKM} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$
weak eigenstates mass eigenstates

- Matter ≠ Antimatter
- CKM mechanism introduced in the Standard Model to include *CPV*

$$V_{CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3 \left[1 - \left(1 - \frac{\lambda^2}{2} \right) (\rho + i\eta) \right] & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

3 generation $\Rightarrow CPV!$

 $\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = V_{\rm CKM} \begin{pmatrix} d\\s\\b \end{pmatrix}$ mass èigénstates weak eigenstates

- Matter ≠ Antimatter ۲
- CKM mechanism introduced in the Standard Model to include *CPV*

excluded area has CL > 0.95

sin 26

0.5

-0.5

-1.0

0.0

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = V_{\rm CKM} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$
weak eigenstates mass eigenstates

$$V_{CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3 \left[1 - \left(1 - \frac{\lambda^2}{2} \right) (\rho + i\eta) \right] & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$
3 generation -> CPVI

αιισπ

 $\Delta m_{d} \& \Delta m_{s}$

0.5

 $\overline{\mathbf{0}}$

10

00

Δm_a

2.0

1.5

On cosmologic scale it doesn't work, but explain what we see in the experiments!!!

Tree $\propto V_{ub}^* V_{ud} \sim \lambda^3$ Penguin $\propto \sum_{x=u,c,t} V_{bx}^* V_{xd} \sim \lambda^3$ $\left|A\left(\overline{\Lambda}_{b}^{0} \rightarrow \overline{p}\overline{h}\overline{h}\overline{h}\right)\right|^{2} = \left|\begin{array}{c} \overline{d}_{a}(\overline{s}) \\ \overline$

- $\left| A \left(\Lambda_b^0 \to p h h h \right) \right|^2 \neq \left| A \left(\overline{\Lambda}_b^0 \to \overline{p} \overline{h} \overline{h} \overline{h} \right) \right|^2$
- Non negligible interference between tree and penguin diagrams
- Sensitive to new physics through loops

Introduction

Physics Motivation

LHCb Experiment

- Collisions *pp* at 7-8-13 TeV in 2011-2012-2015
- Experiment dedicated to the heavy flavour physics (*CPV*, rare decays, spettroscopies):
 - Acceptance LHCb/1fb⁻¹ at 7 Tev:
 - 10¹¹ coppie $b\overline{b}: \sigma(pp \rightarrow b\overline{b}X) = (75.3 \pm 14.0)\mu b$
 - 10¹² coppie $c\overline{c}$: $\sigma(pp \rightarrow c\overline{c}X) = (1.23 \pm 0.19)mb$
- Copious production of heavy b-baryon

Precision measurements on heavy baryons become possible

Particle Identification System

Particle Identification System

Detector

LHCb

Detector

Experimental technique

T-odd observable definition Using momenta

 $p_{4} \qquad p_{1} \qquad p_{2} \qquad p_{2} \qquad p_{2} \qquad p_{3} \qquad p_{2} \qquad p_{3} \qquad p_{3} \qquad p_{4} \qquad p_{4$

• We build the T-odd observable using the final state momenta

• In our case the observable is also P-odd

$$\overline{C}_{\hat{T}}^{T} = \overline{S}_{0} \cdot (\overline{S}_{1} \times \overline{p})$$

 S_{0} S_{0} $C_{\hat{T}} = S_{0} \cdot (S_{1} \times p)$

Using spins and momenta

P- CP- violating asymmetries

Asymmetries

• Two different asymmetries for particle and antiparticle

$$a_{CP}^{\hat{T}-odd} = \frac{1}{2} (A_{\hat{T}} - \overline{A}_{\hat{T}})$$

Largely insensitive to:

- production asymmetries $\Lambda_b^0 / \overline{\Lambda}_b^0$
- reconstruction asymmetries h^+/h^-

$$A_{\hat{T}} = \frac{N(C_{\hat{T}} > 0) - N(C_{\hat{T}} < 0)}{N(C_{\hat{T}} > 0) + N(C_{\hat{T}} < 0)} \quad \text{for } \Lambda_{b}^{0}$$
$$\overline{A}_{\hat{T}} = \frac{N(-\overline{C}_{\hat{T}} > 0) - N(-\overline{C}_{\hat{T}} < 0)}{N(-\overline{C}_{\hat{T}} > 0) + N(-\overline{C}_{\hat{T}} < 0)} \quad \text{for } \overline{\Lambda}_{b}^{0}$$

• P violating observable

$$a_p^{\hat{T}-odd} = \frac{1}{2} (A_{\hat{T}} + \overline{A}_{\hat{T}})$$

Systematic uncertainty reduced

Selection

Decay topology

$$p = 10 \text{ GeV} : s = \gamma \beta c\tau \sim 1mm$$
$$p = 100 \text{ GeV} : s = \gamma \beta c\tau \sim 1cm$$

Selection

Decay topology

Multivariate classifier

Output multivariate classifier

TMVA overtraining check for classifier: BDTDA

~90%

~90%

- Efficienza segnale
- Reiezione fondo

First observations

Asymmetries measurement

Signal distribution in phase space

Binning definition $\Lambda^0_{h} \rightarrow p\pi^-\pi^+\pi^-$

 $m(\pi^+\pi^-_{\rm slow}), m(\pi^+\pi^-_{\rm fast}) \ {\rm GeV}/c^2$ Phase space bin $m(p\pi^+)$ $m(p\pi_{\rm slow}^-)$ $|\Phi|$ (1.07, 1.23) $(0, \frac{\pi}{2})$ (1.07, 1.23) $(\frac{\pi}{2},\pi)$ ρ(770) peak $(0, \frac{\pi}{2})$ (1.23, 1.35) $(\frac{\pi}{2},\pi)$ (1.23, 1.35)(1.35, 5.34) $m(\pi^+\pi^-_{\rm slow}) < 0.78 \text{ or } m(\pi^+\pi^-_{\rm fast}) < 0.78$ $(\overline{0}, \frac{\pi}{2})$ (1.07, 2.00) $m(\pi^+\pi_{\text{slow}}^-) < 0.78 \text{ or } m(\pi^+\pi_{\text{fast}}^-) < 0.78$ (1.07, 2.00) $\left(\frac{\pi}{2},\pi\right)$ (1.35, 5.34)**N*** $m(\pi^+\pi^-_{\rm slow}) > 0.78$ and $m(\pi^+\pi^-_{\rm fast}) > 0.78$ (1.35, 5.34)(1.07, 2.00) $(0, \frac{\pi}{2})$ 8 (1.07, 2.00) $m(\pi^+\pi^-_{\rm slow}) > 0.78$ and $m(\pi^+\pi^-_{\rm fast}) > 0.78$ $\left(\frac{\pi}{2},\pi\right)$ (1.35, 5.34) $m(\pi^+\pi^-_{\rm slow}) < 0.78 \text{ or } m(\pi^+\pi^-_{\rm fast}) < 0.78$ (1.35, 5.34)(2.00, 4.00) $(0, \frac{\pi}{2})$ 9 10(1.35, 5.34)(2.00, 4.00) $m(\pi^+\pi^-_{\rm slow}) < 0.78 \text{ or } m(\pi^+\pi^-_{\rm fast}) < 0.78$ $\left(\frac{\pi}{2},\pi\right)$ (2.00, 4.00) $m(\pi^+\pi^-_{\rm slow}) > 0.78$ and $m(\pi^+\pi^-_{\rm fast}) > 0.78$ $(0, \frac{\pi}{2})$ 11 (1.35, 5.34) $m(\pi^+\pi^-_{slow}) > 0.78$ and $m(\pi^+\pi^-_{fast}) > 0.78$ $(\frac{\pi}{2}, \overline{\pi})$ 12(1.35, 5.34)(2.00, 4.00)ratio ratio ratio Events/(150 MeV/c²) Events/(210 MeV/c²) 350F 450E • $\Lambda_b^0(C_{\widehat{T}}>0)$ • $\Lambda_b^0(C_{\tilde{T}}>0)$ LHCb LHCb LHCb • $\Lambda_b^0(C_{\hat{I}}>0)$ 400 300 $\circ \Lambda_b^0(C_{\tau} < 0)$ $\circ \Lambda_b^0(C_{\hat{\tau}}<0)$ 350 E 250 300 E 200 F 250 200 150 150E 100E 100 E 100 50 E 50 0 3 2 $m(p\pi_{slow})$ [GeV/c²] $m(\pi^+\pi^-_{\text{fast}})$ [GeV/ c^2]

Binning definition

 $m(p\pi^+)$ [GeV/ c^2]

Binning definition $\Lambda_b^0 \rightarrow p\pi^- K^+ K^-$

Results

Results

Results

Permutation test assigning randomly the flavour

LHCP

Final Conclusion

- First observation of these decay modes
- First evidence of *CPV* in baryons in $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$
- Error limited by the statistics ——>

Ålready studies on the new 2016 data on going

• Need to double the statistics for the observation (possible in 2016)

Awarded by SIF in 2015 Congress

Results

Back-up

First observations

Signal distribution in phase space

Systematic uncertainties

Experimental bias $\Delta a_{CP}^{\hat{T}\text{-odd}}, \Delta a_{P}^{\hat{T}\text{-odd}} \sim 0.3\%$ Estimated with a high statists control sample $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{-} (\rightarrow pK^{-}\pi^{+})\pi^{-}$ $\sim 114 \text{k}$ events Cabibbo favoured \longrightarrow negligible CPV

C_T resolution

$$\Delta a_{CP}^{\hat{T}\text{-odd}}$$
 , $\Delta a_{P}^{\hat{T}\text{-odd}} \sim 0.05\%$

The finite CT resolution could induce migration between the categories $C_T > 0$ e $C_T < 0 \longrightarrow$ estimated with MC

Fit model $\Delta a_{CP}^{\hat{T} \text{-odd}}$, $\Delta a_{P}^{\hat{T} \text{-odd}} \sim 0.03 - 0.3\%$

Estimated with simulated pseudoexperiments and using alternative fit model for signal and background

Fit model parametrization

Signal Parametrization

Double Crystal Ball

Model

 $pdf_{sig} = f \cdot CB^+(x;\mu,\sigma,\alpha^+,n^+) + (1-f) \cdot CB^-(x;\mu,\sigma,\alpha^-,n^-)$

$$CB(x;\mu,\sigma,\alpha,n) = N \cdot \begin{cases} \frac{\left(\frac{n}{|\alpha|}\right)^{n} e^{-\frac{1}{2}\alpha^{2}}}{\left(\frac{n}{|\alpha|} - |\alpha| - \frac{x-\mu}{\sigma}\right)^{n}} & x < -|\alpha| \\ e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} & x > -|\alpha| \end{cases}$$

Signal distribution in phase space

 $\Lambda_b^0 \to \Lambda_c^+ \Big(\to p K^- \pi^+ \Big) \pi^-$ control sample

$\Lambda_b^0 \to \Lambda_c^+ (\to p K^- \pi^+) \pi^-$ control sample

Asimmetrie integrate nello spazio delle fasi:

$$A_{T} = (-0.10 \pm 0.43)\%$$
$$\overline{A}_{T} = (-0.41 \pm 0.44)\%$$
$$a_{CP}^{T \text{-odd}} = (-0.15 \pm 0.31)\%$$

Asimmetrie in bin dello spazio delle fasi:

$\rightarrow pK^{-}\pi^{+})\pi^{-}$ control sample

PID cuts	Ι	II	III	IV	V
PID_p	(0.05, 0.10)	(0.1, 0.15)	(0.15, 0.20)	> 0.2	> 0.2
PID_K	> 0.05	> 0.05	> 0.05	(0.05, 0.10)	(0.10, 0.15)
PID_{π}	> 0.05	> 0.05	> 0.05	> 0.05	> 0.05
N_{events}	10322 ± 127	9046 ± 122	7873 ± 132	4691 ± 80	4432 ± 129
PID cuts	VI	VII	VIII	IX	Х
PID_p	> 0.2	> 0.2	> 0.2	> 0.2	> 0.2
PID_K	(0.15, 0.20)	> 0.2	> 0.2	> 0.2	> 0.2
PID_{π}	> 0.05	(0.05, 0.60)	(0.60, 0.85)	(0.85, 0.95)	(0.95, 1.00)
N_{events}	4047 ± 72	2861 ± 65	2596 ± 101	3058 ± 58	13015 ± 120

Control check

Stability of the results

per year & magnet polarity

per periods within the major technical stops

Signal reconstruction efficiency (MC)

Signal reconstruction efficiency (control sample)

