Resistive switching in cluster assembled metallic films

Report 1st Year

10 - 08 - 2018

PhD student: Matteo Mirigliano

Tutor: Prof.ssa C. Lenardi

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

Nanostructured metallic thin films

Why are the electrical properties so interesting?

Nanostructured metallic thin films

Why are the electrical properties so interesting?

Thin Films atom-assembled — Anomalous properties

Thickness < 1 μ m • Defects

- Impurities
- Dislocations
- . . .

Scattering events

** Mayadas e Shatzkes, *Phys. Rev. B*, **1**, 1382 (1986)

* S. B. Arnason et al., *Phys. Rev. Lett.*, **81**, 3936 (1998);

* S. B. Arnason et al., *Phys. Rev. Lett.*, **81**, 3936 (1998);

* Sandouk et al., Sci. Technol. Adv. Mater., 16, 055004 (2015);

logic gates, adaptive systems....

*Strukov et al., *Nature*, **453**, 80 (2008)

size-induced metal-insulator transition

Cluster as building blocks to fabricate film:

- With defects, dislocations...
- Properties different form bulk-like
- Properties different from atomically deposited film

Cluster assembled metallic films

Objectives

- Study the morphology
- Control the growth process
- Understand electrical transport properties

Materials

Hypothesis,

Conclusion Emen

Procedure

Experimental methods

Gain a deeper insight into the methods can be used...

- 1. Cluster metallic film fabrication
- 2. Morphology investigation
- 3. Electrical transport properties investigation

Experimental methods

Experimental methods

AFM, SEM...

- 1. Cluster metallic film fabrication
- 2. Morphology investigation

3. Electrical transport properties investigation

Some image processing...

..geometrical properties analysis (island size, coverage...)

Experimental methods

Voltage-Current measurement

Electrical properties under the application of an external bias

- 1. Cluster metallic film fabrication
- 2. Morphology investigation
- 3. Electrical transport properties investigation

Introduction	Methods	Results	Discussion	Conclusions
	Per	colation Cu	rve	

Introduction	Methods	Results	Discussion	Conclusions

Native Island Size Distribution

Growth in the first stages

Introduction	Methods	Results	Discussion	Conclusion	
0.01 0.008 0.008		Percolation Threshold Growth in the first stages			
CC(112)		1.8	, , , , , , , , , , , , , , , , , , , 		
0.004		1.6 - $\delta_{R} = (R_{eq})$	- R _{eq0})/R _{eq0}		
0.002 -	-	1.4 -			
0 5 10 15 20 25 thickne	30 35 40 45 50 ss(nm)	1.2 -		-	
19 8 AMA MANA 13 13		1 -		-	
		∞ [™] 0.8 -	Lateral growth	1 -	
		0.6		-	
12.58 J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	and the second second	0.4 -	F	-	
26 26 8 20 1		0.2 -	, ⊢ <u>∓</u> − i	-	
		0		_	
Mag = 300.00 K X 100 nm WD = 4.1 mm EHT = 7 Date 29 May 2019 Signa A	200 kV NEMAS Number Number Newards and Surfaces N ■ Talens POI (TFC/RC) D1 M1 AND	-0.2 0.05 0.1 0.	.15 0.2 0.25 0.3 0.35	5 0.4 0.45 0.5	
			coverage		

 $R(\Omega)$

Chloé Minnai, Matteo Mirigliano, Simon A Brown and Paolo Milani: The nanocoherer: an electrically and mechanically resettable resistive switching device based on gold clusters assembled on paper, *Nano Features* (2018)

Introduction	Methods	Results	Discussion	Conclusions

Beyond the Percolation Threshold Morphology

Discussion

At the origins of the non linear behaviour and the switching mechanism in our metallic systems

Presence of defects, grain boundaries...

Different conduction mechanisms: tunnelling...

Electromigration effects

Joule heating, atom rearrangements....

"As grains are growing and restructuring, there is the possibility for grain boundary potentials to alter in both height and width so to either increase or decrease the resistance"

Durkun, Schneider, Welland J. Appl. Phys., 86 (1999)

Introduction

Methods

Results

Discussion

Conclusions

Cluster assembled metallic films

Fundamental point of view

- Organization of the matter at the nanoscale
- Growth morphology
- Understanding of physical properties like electrical transport

Applications

- Non linear electrical properties
- Switching mechanism in metallic films

Introduction

٠

Methods

Results

Cluster assembled metallic films

- Organization of the matter at the nanoscale
- Growth morphology
- Understanding of physical properties like electrical transport
- Non linear electrical properties
- Switching mechanism in metallic films

Conclusions

Perspectives

Image: constrained of the section o

Deepest study of switching behaviour

- Exploiting such a complex phenomena
 - Further study on local electrical and morphological properties of thicker films (AFM)

I	ntroduction	Methods	Results	Discussion	Conclusions
	This is high	ly multidisciplinary proje Thanks to:	ct		DIPARTIMENTO DI FISICA
•	Prof. A. Pullia (F 7 1	
•	Prof. A. Podest	á (UNIMI)			
•	Dr.ssa Frances	sca Borghi			
•	Dr.ssa Chloé M	linnai			
•	Prof. Simon Bro	own (Canterbury Univers	sity, NZ)		CONTRACTOR OF
•	Prof. Luciano C	colombo (Universitá di Ca	agliari)		

• Prof. Davide Galli (UNIMI)

Thanks for attention!

Introduction	Methods	Results	Discussion	Conclusions
--------------	---------	---------	------------	-------------

SLIDE DI RISERVA

Experimental methods Image processing

Thresholding method

Introduction

Experimental methods Image processing

Diameter of a circle with the same area as the region, returned as a scalar. Computed as sqrt(4*Area/pi).

- Perimeter
- Area
- Equivalent diameter = $sqrt(Area/\pi)$

Experimental methods Electric Measurements

Scheme of the device under test

Two probes method

V = R I

V: voltage R: resistance I: current

Beyond the Percolation Threshold Granulometry

Segmentation under same constraints on curvature radius

0.1

0.05

30.8

30.85

Before switch

After switch

 $low - high - low \rightarrow voltage$