

Probing magnetism in multiferroic heterostructures with synchrotron light

10 october 2017 - First year workshop - XXXII cycle

Pro:

- Non-volatile
- High endurance
- Low power

Pro:

How to read&write?

- Non-volatile
- High endurance
- Low power

Pro:

How to read&write?

- Non-volatile
- High endurance
- Low power

read/write "heads"

- moving parts
- slow access time

Magnetic Sensors

2 / 12

Pro:

- Non-volatile
- High endurance
- Low power

m

0

How to read&write?

- read/write "heads"
- Spin-Transfer Torque
- currents dissipate power!

Pro:

- Non-volatile
- High endurance
- Low power

- read/write "heads"
- Spin-Transfer Torque
- electric fields

- no heat, no dissipation
- easier to control
- new functionalities

Multiferroic Materials

Magnetism & Ferroelectricity

Multiferroic Materials

They are so few, and mostly ANTI-ferromagnetic.

m

О

Magnetism & Ferroelectricity

Multiferroic Materials

They are so few, and mostly ANTI-ferromagnetic.

What's next?

m

0

Magnetism & Ferroelectricity

Multiferroic Heterostructures

Multiferroic Heterostructures

Coupling of:

- charge
- spin
- strain

across the ferromagnetic/ferroelectric interface

Multiferroic Heterostructures

Coupling of:

- charge
- spin
- strain

across the ferromagnetic/ferroelectric interface

Understanding the interplay of different

Which materials?

- Strong electronic correlations
- Coupling of charge, spin, lattice
- Broken symmetry at the interface

0

m

ferromagnets:	ferroelectrics:	multiferroics:
La _{1-x} Sr _x MnO ₃	BaTiO ₃	BiFeO ₃
Pr _{1-x} Ca _x MnO ₃	PbTiO ₃	YMnO ₃
SrRuO ₃	$Pb_{1-x}Zr_xTiO_3$	BiMnO ₃

...

...

...

Which materials?

- Strong electronic correlations
- Coupling of charge, spin, lattice
- Broken symmetry at the interface

Multiferroic effects

m

ferromagnets:	fer
La _{1-x} Sr _x MnO ₃	
$Pr_{1-x}Ca_{x}MnO_{3}$	
SrRuO ₃	Pt

...

5 / 12

ferroelectrics:

BaTiO₃ PbTiO₃ Pb_{1-x}Zr_xTiO₃

• • •

multiferroics:

BiFeO3 YMnO3 BiMnO3

...

Ferromagnetic:

Ferromagnetic:

m

0

• La_{1-x}Sr_xMnO₃ (LSMO)

Ferromagnetic:

- La_{1-x}Sr_xMnO₃ (LSMO)
- Fe_xMn_{1-x}

Ferromagnetic:

Ferroelectric:

- La_{1-x}Sr_xMnO₃ (LSMO)
- Fe_xMn_{1-x}

Ferromagnetic:

• La_{1-x}Sr_xMnO₃ (LSMO)

Ferroelectric:

• BaTiO₃ (BTO)

• Fe_xMn_{1-x}

Ferromagnetic:

- La_{1-x}Sr_xMnO₃ (LSMO)
- Fe_xMn_{1-x}

m

0

Ferroelectric:

- BaTiO₃ (BTO)
- PMN-PT

federico.motti@unimi.it

m

 \mathbf{O}

X-ray Absorption Spectroscopy

federico.motti@unimi.it

m

X-ray Magnetic Circular Dichroism

🕝 i o m

Advantages:

• Elemental sensitivity

- Elemental sensitivity
- Chemical information

- Elemental sensitivity
- Chemical information
- Suited for thin-films

Requirements:

- Elemental sensitivity
- Chemical information
- Suited for thin-films

Advantages:

- Elemental sensitivity
- Chemical information
- Suited for thin-films

Requirements:

• High-intensity X-rays

Advantages:

- Elemental sensitivity
- Chemical information
- Suited for thin-films

Requirements:

- High-intensity X-rays
- Energy tuning

Advantages:

- Elemental sensitivity
- Chemical information
- Suited for thin-films

Requirements:

- High-intensity X-rays
- Energy tuning
- Control on polarization

Advantages:

- Elemental sensitivity
- Chemical information
- Suited for thin-films

Requirements:

- High-intensity X-rays
- Energy tuning
- Control on polarization

LSMO / BTO

m

0

r

federico.motti@unimi.it

m

О

4.0

3.5

3.0

2.5

2.0

1.5

1.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Mn L₃ XMOD [%]

Resistance [$M\Omega$]

federico.motti@unimi.it

300

10 / 12

10/10/2017

LSMO / BTO

- Out-of-plane polarization \rightarrow less strained LSMO
- \rightarrow Ferromagnetic ordering

m

О

10/10/2017

LSMO / BTO

- Out-of-plane polarization \rightarrow less strained LSMO
- \rightarrow Ferromagnetic ordering

m

federico.motti@unimi.it

FeMn / PMN-PT

UNIVERSITÀ DEGLI STUDI DI MILANO

thank you for your attention

10 october 2017 - First year workshop - XXXII cycle

"Double-exchange" in manganites

E. Dagotto et al. / Physics Reports 344 (2001) 1-153

10/10/2017

Simulations

Tight competition between strain along the three axis

FM prefers lower strain and isotropic unit cell