UniMi

High Energy Resummation of Transverse Momentum Distributions

Claudio Muselli claudio.muselli@infn.mi.it

Università di Milano

Physics Workshop 12 October 2015

< 🗇 🕨

UniMi

LHC Phenomenology

I will present a new method to increase the precision of the theoretical predictions at LHC.

C. Muselli

LHC Phenomenology

Particle Physics Phenomenology is a part of the Theoretical Physics, with a crucial role in collider physics experiments.

- Its task is to calculate detailed prediction for the collider experiments, with high precision.
- These predictions, built in the Standard Model, are fundamental in discovering any trace of New Physics.

LHC Phenomenology

- Particle Physics Phenomenology is a part of the Theoretical Physics, with a crucial role in collider physics experiments.
- Its task is to calculate detailed prediction for the collider experiments, with high precision.
- These predictions, built in the Standard Model, are fundamental in discovering any trace of New Physics.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

LHC Phenomenology

- Particle Physics Phenomenology is a part of the Theoretical Physics, with a crucial role in collider physics experiments.
- Its task is to calculate detailed prediction for the collider experiments, with high precision.
- These predictions, built in the Standard Model, are fundamental in discovering any trace of New Physics.

Discovering New Physics

New Physics at LHC appears as a significant discrepancy between the theoretical prediction and the experimental data.

 "significant" means a discrepancy greater than the uncertainties, both theoretical and experimental.

Discovering New Physics

- New Physics at LHC appears as a significant discrepancy between the theoretical prediction and the experimental data.
- "significant" means a discrepancy greater than the uncertainties, both theoretical and experimental.

Discovering New Physics

- New Physics at LHC appears as a significant discrepancy between the theoretical prediction and the experimental data.
- "significant" means a discrepancy greater than the uncertainties, both theoretical and experimental.

A B > A B >

UniMi

Discovering New Physics

- New Physics at LHC appears as a significant discrepancy between the theoretical prediction and the experimental data.
- "significant" means a discrepancy greater than the uncertainties, both theoretical and experimental.

イロト イヨト イヨト イ

Discovering New Physics

In order to find traces of New Physics, we measure at LHC:

- Inclusive observables
- Exclusive observables

A B > A B >

Discovering New Physics

In order to find traces of New Physics, we measure at LHC:

- Inclusive observables
- Exclusive observables

-

Discovering New Physics

In order to find traces of New Physics, we measure at LHC:

Inclusive observables
 Example in Particle Physics:
 Number of Higgs in unit time and area

$$\sigma = 100 \cdot 10^{-36} cm^{-2} \tag{1}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Exclusive observables

C. Muselli

Discovering New Physics

In order to find traces of New Physics, we measure at LHC:

Inclusive observables
 Example in real life:
 Number of Marios today in Milan

$$\sigma_{\rm MARIO} = 274 \tag{1}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Exclusive observables

C. Muselli

Discovering New Physics

In order to find traces of New Physics, we measure at LHC:

- Inclusive observables
- Exclusive observables

(日) (同) (三) (三)


Discovering New Physics

In order to find traces of New Physics, we measure at LHC:

- Inclusive observables
- Exclusive observables

Example in Particle Physics:

Number of Higgs in unit time and area with a certain angle

$rac{d\sigma}{dp_{\mathrm{T}}^2}$

C. Muselli

Discovering New Physics

In order to find traces of New Physics, we measure at LHC:

- Inclusive observables
- Exclusive observables
 - Example in **real** life:

Number of Marios today in Milan in a certain neighbourhood

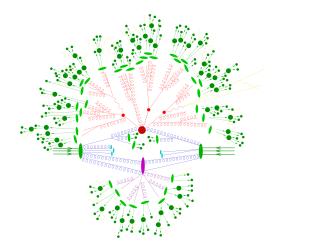
 $\frac{d\sigma_{MARIO}}{dp_{NEIGHBOURHOOD}^2}$

C. Muselli

UniMi

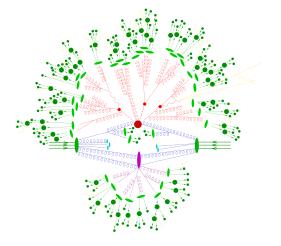
Discovering New Physics

In order to find traces of New Physics, we measure at LHC:


- Inclusive observables
- Exclusive observables

 $\mathsf{Exclusive} \to \mathsf{More} \ \mathsf{Information} \to \mathsf{More} \ \mathsf{complexity}$

< 🗇 > <


UniMi

What do we see at LHC??

C. Muselli

What do we see at LHC??

What we want to predict is this mess!!!

C. Muselli

What do we see at LHC??

Let's inspect more carefully...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 めへの

UniMi

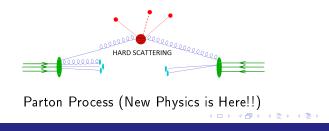
C. Muselli

C. Muselli

What do we see at LHC??

Let's inspect more carefully...

What do we see at LHC??


Let's inspect more carefully...

C. Muselli

What do we see at LHC??

Let's inspect more carefully...

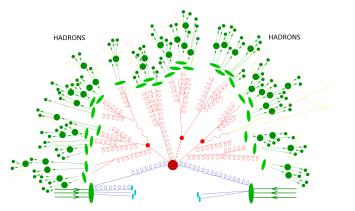
C. Muselli

< A

≺ ≣⇒

What do we see at LHC??

Let's inspect more carefully...

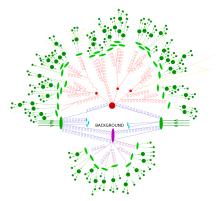

Parton Shower Tools (PYTHIA or POWEG)

C. Muselli

What do we see at LHC??

Let's inspect more carefully...

Hadronization Models

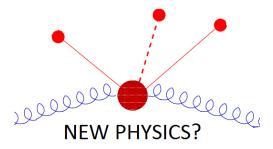

C. Muselli

< 🗇 🕨

UniMi

What do we see at LHC??

Let's inspect more carefully...


Then there are Experimental Problems (BACKGROUND)!

C. Muselli

UniMi

Parton Process Calculation

We study this process in Perturbative QCD:

C. Muselli

Conclusion

Parton Process Calculation

We study this process in Perturbative QCD:

$$\frac{d\sigma}{dp_{\rm T}^2} = C_0 \left(1 + C_1 \alpha_s + C_2 \alpha_s^2 + \ldots \right) \tag{1}$$

<ロ> <同> <同> <同> < 同>

э

UniMi

C. Muselli

Parton Process Calculation

We study this process in Perturbative QCD:

$$\frac{d\sigma}{dp_{\rm T}^2} = C_0 \left(1 + C_1 \alpha_s + C_2 \alpha_s^2 + \ldots \right) \tag{1}$$

• C_0 is called Leading order (LO).

- C₁ is called Next-to-Leading order (NLO).
- C₂ is called Next-to-Next-to-Leading order (NNLO).
- And so on...

C. Muselli

Parton Process Calculation

We study this process in Perturbative QCD:

$$\frac{d\sigma}{dp_{\rm T}^2} = C_0 \left(1 + C_1 \alpha_s + C_2 \alpha_s^2 + \ldots \right) \tag{1}$$

- C_0 is called Leading order (LO).
- C₁ is called Next-to-Leading order (NLO).
- C₂ is called Next-to-Next-to-Leading order (NNLO).
 And so on

Parton Process Calculation

We study this process in Perturbative QCD:

$$\frac{d\sigma}{dp_{\rm T}^2} = C_0 \left(1 + C_1 \alpha_s + C_2 \alpha_s^2 + \ldots \right) \tag{1}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- C_0 is called Leading order (LO).
- C_1 is called Next-to-Leading order (NLO).
- C_2 is called Next-to-Next-to-Leading order (NNLO).
- And so on...

Parton Process Calculation

$$\frac{d\sigma}{dp_{\rm T}^2} = C_0 \left(1 + C_1 \alpha_s + C_2 \alpha_s^2 + \dots \right) \tag{1}$$

-

UniMi

- C₀ is called Leading order (LO).
- C₁ is called Next-to-Leading order (NLO).
- C_2 is called Next-to-Next-to-Leading order (NNLO).
- And so on...

C. Muselli

Conclusion

UniMi

Parton Process Calculation

$$\frac{d\sigma}{dp_{\rm T}^2} = C_0 \left(1 + C_1 \alpha_s + C_2 \alpha_s^2 + \dots \right) \tag{1}$$

(日) (日) (日) (日)

The tool to evaluate them is the Feynman Diagram Technique

イロト イポト イヨト イヨ

UniMi

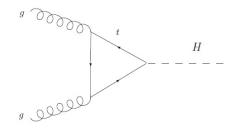
Parton Process Calculation

$$\frac{d\sigma}{dp_{\rm T}^2} = C_0 \left(1 + C_1 \alpha_s + C_2 \alpha_s^2 + \ldots \right) \tag{1}$$

The tool to evaluate them is the Feynman Diagram Technique

- Leading Order
- Next-to-Leading Order
- Next-to-Next-to-Leading-Order More than a hundred diagrams!!!

C. Muselli


A D > A A P >

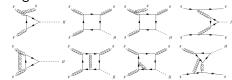
UniMi

Parton Process Calculation

$$\frac{d\sigma}{dp_{\rm T}^2} = C_0 \left(1 + C_1 \alpha_s + C_2 \alpha_s^2 + \ldots \right) \tag{1}$$

The tool to evaluate them is the **Feynman Diagram Technique**Leading Order

- Next-to-Leading Order
- Next-to-Next-to-Leading-Order


C. Muselli

Parton Process Calculation

$$\frac{d\sigma}{dp_{\rm T}^2} = C_0 \left(1 + C_1 \alpha_s + C_2 \alpha_s^2 + \dots \right) \tag{1}$$

The tool to evaluate them is the Feynman Diagram Technique

- Leading Order
- Next-to-Leading Order

Next-to-Next-to-Leading-Order More than a hundred diagrams!!

Parton Process Calculation

$$\frac{d\sigma}{dp_{\rm T}^2} = C_0 \left(1 + C_1 \alpha_s + C_2 \alpha_s^2 + \ldots \right) \tag{1}$$

The tool to evaluate them is the Feynman Diagram Technique

- Leading Order
- Next-to-Leading Order
- Next-to-Next-to-Leading-Order More than a hundred diagrams!!!

UniMi

Parton Process Calculation

$$\frac{d\sigma}{dp_{\rm T}^2} = C_0 \left(1 + C_1 \alpha_s + C_2 \alpha_s^2 + \dots \right) \tag{1}$$

The tool to evaluate them is the Feynman Diagram Technique

Feynman Diagram Evaluation is not enough!!

There are cases where the usual Fixed Order Evaluation does not permit us to reach the desired accuracy!

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

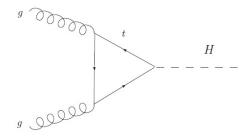
Conclusion

A Simple Example: Higgs Boson Production

At LHC, the Higgs Boson is produced mainly by gluon fusion:

C. Muselli High Energy Resummation of Transverse Momentum Distributions UniMi

э

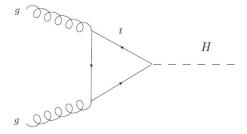

イロト イヨト イヨト

Conclusion

UniMi

A Simple Example: Higgs Boson Production

At LHC, the Higgs Boson is produced mainly by gluon fusion:



Conclusion

UniMi

A Simple Example: Higgs Boson Production

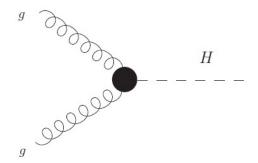
At LHC, the Higgs Boson is produced mainly by gluon fusion:

Too difficult!

The presence of a loop and the huge number of diagrams in the next orders prevent us from reaching the desired accuracy.

C. Muselli

◆□ > ◆□ > ◆ □ > ◆ □ >


2

UniMi

Conclusion

A Simple Example: Higgs Boson Production

At LHC, the Higgs Boson is produced mainly by gluon fusion:

So...

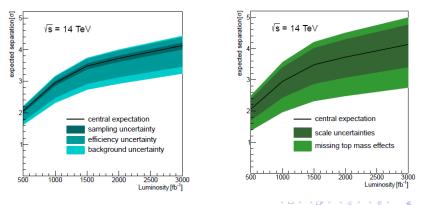
...normally we use a approximation called heavy top approximation

C. Muselli

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Conclusion

How good is this approximation?

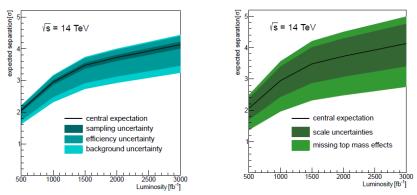

Correct answer: We don't know!! This is now our biggest uncertainty in the final result

C. Muselli

UniMi

How good is this approximation?

Correct answer: We don't know!! [Langenegger *et al* '15] This is now our biggest uncertainty in the final result Experimental Theoretical


C. Muselli

UniMi

How good is this approximation?

Experimental

The inclusion of the mass quark effects is of primary importance in this context

C. Muselli

UniMi

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

UniMi

Changing point of view

Since technical difficulties does not allow us to evaluate higher orders in the full theory, we follow a new road

Changing point of view

Since technical difficulties does not allow us to evaluate higher orders in the full theory, we follow a new road

UniMi

<ロ> <同> <同> <同> < 同>

UniMi

Changing point of view

Resummation

C. Muselli

$$x = \frac{m_{\rm H}^2}{s}$$

$rac{d\sigma}{dp_{\mathrm{T}}^2}\left(x,p_{\mathrm{T}}^2 ight)$	${f Threshold} \ x o 1$	$\begin{array}{c} Collinear \\ \boldsymbol{p}_{\scriptscriptstyle \mathrm{T}}^{2} \to \boldsymbol{0} \end{array}$	$\begin{array}{c} H E \\ x \to 0 \end{array}$	Other
LO α_s	$\bar{c}_0\left(\frac{ \mathfrak{n}(1-x) }{1-x}\right)_+$	$ ilde{C}_0 rac{1}{ ho_{ m T}^2}$	$C_0 \frac{1}{x}$	$C_0^{\mathrm{reg}}\left(x, p_{\mathrm{T}}^2\right)$
NLO α_s^2	$\overline{c}_1\left(\frac{\ln^2(1-x)}{1-x}\right)_+$	$\widetilde{c}_1 rac{\ln p_{\mathrm{T}}^2}{p_{\mathrm{T}}^2}$	$c_1 \frac{\ln x}{x}$	$C_{1}^{\mathrm{reg}}\left(x,p_{\mathrm{T}}^{2} ight)$
NNLO α_s^3	$\overline{c}_2\left(\frac{\ln^3(1-x)}{1-x}\right)_+$	$\widetilde{C}_2 \frac{ \mathbf{n}^2 \ \rho_{\mathrm{T}}^2}{\rho_{\mathrm{T}}^2}$	$C_2 \frac{ \mathbf{n}^2 x }{x}$	$C_{2}^{\mathrm{reg}}\left(x,p_{\mathrm{T}}^{2} ight)$

High Energy Resummation of Transverse Momentum Distributions

3

(ロ) (部) (E) (E)

(ロ) (部) (E) (E)

æ

UniMi

Resummation in QCD

Fixed Order Evaluation

$rac{d\sigma}{dp_{\mathrm{T}}^2}\left(x,p_{\mathrm{T}}^2 ight)$	${f Threshold} \ x o 1$	$egin{array}{c} {\sf Collinear}\ {m ho}_{ m T}^2 o 0 \end{array}$	H. E. $x \rightarrow 0$	Other
LO α_s	$\bar{c}_0\left(\frac{\ln(1-x)}{1-x}\right)_+$	$ ilde{C}_0rac{1}{ ho_{ m T}^2}$	$C_0 \frac{1}{x}$	$C_0^{ m reg}\left(x, p_{ m T}^2 ight)$
NLO α_s^2	$\bar{c}_1\left(\frac{\ln^2(1-x)}{1-x}\right)_+$	$\widetilde{c}_1 rac{\ln p_{\mathrm{T}}^2}{p_{\mathrm{T}}^2}$	$C_1 \frac{\ln x}{x}$	$C_{1}^{\mathrm{reg}}\left(x,p_{\mathrm{T}}^{2} ight)$
NNLO α_s^3	$\bar{c}_2\left(\frac{\ln^3(1-x)}{1-x}\right)_+$	$ ilde{C}_2 rac{\ln^2 p_{\mathrm{T}}^2}{p_{\mathrm{T}}^2}$	$C_2 \frac{ \mathbf{n}^2 \times \mathbf{x} }{\mathbf{x}}$	$C_{2}^{\mathrm{reg}}\left(x, p_{\mathrm{T}}^{2}\right)$

(ロ) (部) (E) (E)

æ

UniMi

Resummation in QCD

Fixed Order Evaluation

$rac{d\sigma}{d p_{\mathrm{T}}^2}\left(x, p_{\mathrm{T}}^2\right)$	${\sf Threshold} \ x o 1$	${f Collinear}\ {m ho}_{ m T}^2 o 0$	H. E. $x \rightarrow 0$	Other
LO α_s	$\bar{c}_0\left(\frac{\ln(1-x)}{1-x}\right)_+$	$\widetilde{C}_0 rac{1}{ ho_{ m T}^2}$	$C_0 \frac{1}{x}$	$C_0^{\mathrm{reg}}\left(x, p_{\mathrm{T}}^2\right)$
NLO α_s^2	$\bar{c}_1\left(\frac{\ln^2(1-x)}{1-x}\right)_+$	$ ilde{C}_1 rac{\ln p_{\mathrm{T}}^2}{p_{\mathrm{T}}^2}$	$C_1 \frac{\ln x}{x}$	$C_{1}^{\mathrm{reg}}\left(x,p_{\mathrm{T}}^{2} ight)$
NNLO α_s^3	$\bar{c}_2\left(\frac{\ln^3(1-x)}{1-x}\right)_+$	$ ilde{C}_2 rac{\ln^2 p_{\mathrm{T}}^2}{p_{\mathrm{T}}^2}$	$C_2 \frac{ \mathbf{n}^2 \times \mathbf{x} }{\mathbf{x}}$	$C_{2}^{\mathrm{reg}}\left(x, p_{\mathrm{T}}^{2}\right)$

C. Muselli

Fixed Order Evaluation

$rac{d\sigma}{dp_{\mathrm{T}}^2}\left(x,p_{\mathrm{T}}^2 ight)$	${\sf Threshold} \ x o 1$	${f Collinear}\ {m ho}_{ m T}^2 o 0$	H. E. $x \rightarrow 0$	Other
LO α_s	$\bar{c}_0\left(\frac{\ln(1-x)}{1-x}\right)_+$	$\tilde{c}_0 rac{1}{ ho_{ m T}^2}$	$C_0 \frac{1}{x}$	$C_0^{\mathrm{reg}}\left(x, p_{\mathrm{T}}^2\right)$
NLO α_s^2	$\overline{c}_1\left(\frac{\ln^2(1-x)}{1-x}\right)_+$	$\widetilde{c}_1 rac{\ln \rho_{\mathrm{T}}^2}{\rho_{\mathrm{T}}^2}$	$C_1 \frac{\ln x}{x}$	$C_{1}^{\mathrm{reg}}\left(x,p_{\mathrm{T}}^{2} ight)$
NNLO α_s^3	$\bar{c}_2\left(\frac{\ln^3(1-x)}{1-x}\right)_+$	$ ilde{C}_2 rac{\ln^2 p_{\mathrm{T}}^2}{p_{\mathrm{T}}^2}$	$C_2 \frac{\ln^2 x}{x}$	$C_{2}^{\mathrm{reg}}\left(x, p_{\mathrm{T}}^{2} ight)$

C. Muselli

High Energy Resummation of Transverse Momentum Distributions

UniMi

æ

(ロ) (部) (E) (E)

Resummation

$rac{d\sigma}{dp_{\mathrm{T}}^2}\left(x,p_{\mathrm{T}}^2 ight)$	${f Threshold} \ x o 1$	${f Collinear}\ {m ho}_{ m T}^2 o 0$	H. E. $x \rightarrow 0$	Other
LO α_s	$\bar{c}_0\left(rac{\ln(1-x)}{1-x} ight)_+$	$\tilde{C}_0 \frac{1}{p_{\mathrm{T}}^2}$	$C_0 \frac{1}{x}$	$C_0^{\mathrm{reg}}\left(x, p_{\mathrm{T}}^2\right)$
NLO α_s^2	$\bar{c}_1\left(\frac{\ln^2(1-x)}{1-x}\right)_+$	$\widetilde{c}_1 rac{\ln p_{\mathrm{T}}^2}{p_{\mathrm{T}}^2}$	$c_1 \frac{\ln x}{x}$	$C_{1}^{\mathrm{reg}}\left(x,p_{\mathrm{T}}^{2} ight)$
NNLO α_s^3	$\bar{c}_2\left(rac{\ln^3(1-x)}{1-x} ight)_+$	$\widetilde{C}_2 \frac{ \mathbf{n}^2 \ p_{\mathrm{T}}^2}{p_{\mathrm{T}}^2}$	$C_2 \frac{ \mathbf{n}^2 \times \mathbf{x} }{\mathbf{x}}$	$C_{2}^{\mathrm{reg}}\left(x,p_{\mathrm{T}}^{2} ight)$

High Energy Resummation of Transverse Momentum Distributions

3

(日) (四) (王) (王)

Resummation

$d\sigma$ (x p^2)	Threshold	Collinear	H. E.	Other
$rac{d\sigma}{dp_{\mathrm{T}}^2}\left(x,p_{\mathrm{T}}^2 ight)$	x ightarrow 1	$p_{ m T}^2 ightarrow 0$	$x \rightarrow 0$	Other
LO α_s	$\bar{c}_0\left(\frac{ \mathfrak{n}(1-x) }{1-x}\right)_+$	$ ilde{C}_0rac{1}{ ho_{ m T}^2}$	$C_0 \frac{1}{x}$	$C_0^{\mathrm{reg}}\left(x, p_{\mathrm{T}}^2\right)$
NLO α_s^2	$\overline{c}_1\left(\frac{\ln^2(1-x)}{1-x}\right)_+$	$\widetilde{c}_1 rac{\ln ho_{ m T}^2}{ ho_{ m T}^2}$	$c_1 \frac{\ln x}{x}$	$C_{1}^{\mathrm{reg}}\left(x,p_{\mathrm{T}}^{2}\right)$
NNLO α_s^3	$\overline{c}_2\left(\frac{\ln^3(1-x)}{1-x}\right)_+$	$ ilde{C}_2 rac{\ln^2 p_{\mathrm{T}}^2}{p_{\mathrm{T}}^2}$	$C_2 \frac{ \mathbf{n}^2 \times \mathbf{x} }{\mathbf{x}}$	$C_{2}^{\mathrm{reg}}\left(x,p_{\mathrm{T}}^{2} ight)$

C. Muselli

High Energy Resummation of Transverse Momentum Distributions

3

(日) (四) (王) (王)

(ロ) (部) (E) (E)

3

UniMi

Resummation in QCD

Resummation

			\checkmark	
$d\sigma (x, p^2)$	Threshold	Collinear	H. E.	Other
$rac{d\sigma}{dp_{\mathrm{T}}^2}\left(x,p_{\mathrm{T}}^2 ight)$	x ightarrow 1	$p_{\scriptscriptstyle m T}^2 ightarrow 0$	x ightarrow 0	Other
LO α_s	$\bar{c}_0\left(\frac{ n(1-x) }{1-x}\right)_+$	$\widetilde{c}_0 rac{1}{ ho_{ m T}^2}$	$C_0 \frac{1}{x}$	$C_{0}^{\mathrm{reg}}\left(x,p_{\mathrm{T}}^{2} ight)$
NLO α_s^2	$\overline{c}_1\left(\frac{\ln^2(1-x)}{1-x}\right)_+$	$ ilde{C}_1 rac{\ln p_{\mathrm{T}}^2}{p_{\mathrm{T}}^2}$	$c_1 \frac{\ln x}{x}$	$C_{1}^{\mathrm{reg}}\left(x,p_{\mathrm{T}}^{2} ight)$
NNLO α_s^3	$\overline{c}_2\left(\frac{\ln^3(1-x)}{1-x}\right)_+$	$ ilde{C}_2 rac{\ln^2 p_{\mathrm{T}}^2}{p_{\mathrm{T}}^2}$	$C_2 \frac{\ln^2 x}{x}$	$C_2^{\mathrm{reg}}\left(x, p_{\mathrm{T}}^2\right)$

Resummation

$rac{d\sigma}{dp_{\mathrm{T}}^2}\left(x,p_{\mathrm{T}}^2 ight)$	$\begin{array}{c} Threshold \\ x \to 1 \end{array}$	${f Collinear}\ {m ho}_{ m T}^2 o 0$	H. E. $x \rightarrow 0$	Other
LO α_s	$\bar{c}_0\left(\frac{ \mathfrak{n}(1-x) }{1-x}\right)_+$	$\widetilde{c}_0 rac{1}{ ho_{ m T}^2}$	$C_0 \frac{1}{x}$	$C_0^{\mathrm{reg}}\left(x, p_{\mathrm{T}}^2\right)$
NLO α_s^2	$\overline{c}_1\left(\frac{\ln^2(1-x)}{1-x}\right)_+$	$\widetilde{c}_1 rac{\ln p_{\mathrm{T}}^2}{p_{\mathrm{T}}^2}$	$c_1 \frac{\ln x}{x}$	$C_{1}^{\mathrm{reg}}\left(x,p_{\mathrm{T}}^{2} ight)$
NNLO α_s^3	$\bar{c}_2\left(\frac{\ln^3(1-x)}{1-x}\right)_+$	$ ilde{C}_2 rac{\ln^2 p_{\mathrm{T}}^2}{p_{\mathrm{T}}^2}$	$C_2 \frac{ \mathbf{n}^2 x }{x}$	$C_2^{ m reg}\left(x,p_{ m T}^2 ight)$

C. Muselli

High Energy Resummation of Transverse Momentum Distributions

æ

(ロ) (部) (E) (E)

(ロ) (部) (E) (E)

æ

UniMi

Resummation in QCD

Fixed Order+Resummation

$rac{d\sigma}{dp_{\mathrm{T}}^{2}}\left(x, p_{\mathrm{T}}^{2} ight)$	${\sf Threshold} \ x o 1$	${f Collinear}\ {m ho}_{ m T}^2 o 0$	H. E. $x \rightarrow 0$	Other
LO α₅	$\bar{c}_0\left(rac{\ln(1-x)}{1-x} ight)_+$	$ ilde{C}_0rac{1}{ ho_{ m T}^2}$	$C_0 \frac{1}{x}$	$C_0^{ m reg}\left(x, p_{ m T}^2 ight)$
NLO α_s^2	$\bar{c}_1\left(\frac{\ln^2(1-x)}{1-x}\right)_+$	$\widetilde{c}_1 rac{\ln p_{\mathrm{T}}^2}{p_{\mathrm{T}}^2}$	$C_1 \frac{\ln x}{x}$	$C_{1}^{\mathrm{reg}}\left(x,p_{\mathrm{T}}^{2} ight)$
NNLO α_s^3	$\bar{c}_2\left(\frac{\ln^3(1-x)}{1-x}\right)_+$	$\widetilde{c}_2 rac{\ln^2 p_{\mathrm{T}}^2}{p_{\mathrm{T}}^2}$	$C_2 \frac{ \mathbf{n}^2 _X}{x}$	$C_2^{\mathrm{reg}}\left(x, p_{\mathrm{T}}^2\right)$

History of High Energy Resummation

Periodo	Risultati	Autori
Fine '70	P_{gg} - BFKL equation	Balitsky, Fadin, Kuraev, Lipatov
'80	Amplitude Factorization	Catani, Ciafaloni e collab.
'90-'00	DIS,Heavy flavour production	Catani, Ciafaloni, Hartmann - Ellis, Ball
'00	Parton Evolution at small-x	Ciafaloni, Colferai, Salam, Stasto (CCSS) Altarelli, Ball, Forte (ABS)
2008	Higgs in gluon fusion	Marzani, Ball, Forte, Vicini, Del Duca
2007-2010	Rapidity Distribution	Caola, Forte, Marzani
2014-2015	Transverse Momentum Distribution	Forte, Muselli

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

UniMi

C. Muselli

・ロト ・回ト ・ヨト ・

UniMi

Building a Resummation Theory

- Select the limit and the observable High Energy $x \to 0$ Transverse momentum distribution $\frac{de}{dp}$
- Factorization In the limit, a generic dominant diagram is wirtten as $\longrightarrow D_n = F(E_1, \dots, E_m)$ with E_i some simple ingredients or subdiagrams

Sum all the $D_n \longrightarrow$ Exponentiation $R = \sum_i D_n = H$ exp K

C. Muselli

< ロ > < 同 > < 回 > < 回 >

UniMi

Building a Resummation Theory

Select the limit and the observable High Energy $x \rightarrow 0$ Transverse momentum distribution $\frac{d\sigma}{d\rho_x^2}$

2 Factorization In the limit, a generic dominant diagram is wirtten as → D_n = F (E₁,..., E_m) with E_i some simple ingredients or subdiagrams

3 Sum all the $D_n \longrightarrow \mathbf{Exponentiation} \ R = \sum_n D_n = H \exp K$

イロト イポト イヨト イヨト

UniMi

Building a Resummation Theory

- Select the limit and the observable High Energy $x \rightarrow 0$ Transverse momentum distribution $\frac{d\sigma}{dp_{a}^{2}}$
- **2** Factorization In the limit, a generic dominant diagram is wirtten as $\longrightarrow D_n = F(E_1, \ldots, E_m)$ with E_i some simple ingredients or subdiagrams

$$D_n = \frac{1}{n!} K^n H$$

3 Sum all the $D_n \longrightarrow \mathbf{Exponentiation} \ R = \sum_n D_n = H \exp K$

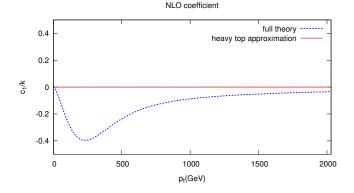
イロト イポト イヨト イヨト

UniMi

Building a Resummation Theory

- Select the limit and the observable High Energy $x \rightarrow 0$ Transverse momentum distribution $\frac{d\sigma}{dp_{a}^{2}}$
- **2** Factorization In the limit, a generic dominant diagram is wirtten as $\longrightarrow D_n = F(E_1, \ldots, E_m)$ with E_i some simple ingredients or subdiagrams

$$D_n = \frac{1}{n!} K^n H$$

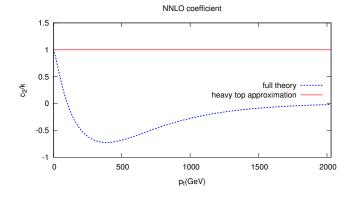

3 Sum all the $D_n \longrightarrow \text{Exponentiation } R = \sum_n D_n = H \exp K$

・ロト ・回ト ・ヨト

э

UniMi

Preliminary Results

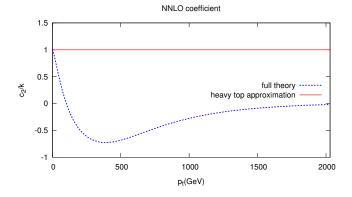


Sizeable difference also at relative small value of ρ_Γ.
 Inclusion of these terms may reduce the uncertainty due to the

C. Muselli

UniMi

Preliminary Results



- Sizeable difference also at relative small value of $p_{\rm T}$.
- Inclusion of these terms may reduce the uncertainty due to the effective approximation.

C. Muselli

UniMi

Preliminary Results

- Sizeable difference also at relative small value of $p_{\rm T}$.
- Inclusion of these terms may reduce the uncertainty due to the effective approximation.

C. Muselli

Conclusion

Conclusion and Outlook

In conclusion:

- QCD Phenomenology is of primary importance in collider physics.
- The usual perturbative approach in some cases fail to reach the desired accuracy
- To increase the precision, it's possible to follow new roads: → Resummation Theories.

Conclusion

Conclusion and Outlook

In conclusion:

- QCD Phenomenology is of primary importance in collider physics.
- The usual perturbative approach in some cases fail to reach the desired accuracy
- To increase the precision, it's possible to follow new roads: → Resummation Theories.

Conclusion

Conclusion and Outlook

In conclusion:

- QCD Phenomenology is of primary importance in collider physics.
- The usual perturbative approach in some cases fail to reach the desired accuracy
- To increase the precision, it's possible to follow new roads: → Resummation Theories.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Conclusion

Conclusion and Outlook

In this first year,

- I have proved a new theory of resummation at high energy for transverse momentum distribution.
- I have applied this procedure to the Higgs production case.
- The result can help in understanding the quality of the effective approximation and in improving it.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Conclusion

Conclusion and Outlook

In this first year,

- I have proved a new theory of resummation at high energy for transverse momentum distribution.
- I have applied this procedure to the Higgs production case.
- The result can help in understanding the quality of the effective approximation and in improving it.

Conclusion

Conclusion and Outlook

In this first year,

- I have proved a new theory of resummation at high energy for transverse momentum distribution.
- I have applied this procedure to the Higgs production case.
- The result can help in understanding the quality of the effective approximation and in improving it.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Conclusion

UniMi

Conclusion and Outlook

Possible outlook:

- We want to apply all the machinery to other process (DY, Heavy quark production, jets...)
- We want to join two resummation theories (High Energy with small p_T) to gain the benefits of both.
- Many other things...

C. Muselli

Conclusion

UniMi

Conclusion and Outlook

Possible outlook:

- We want to apply all the machinery to other process (DY, Heavy quark production, jets...)
- We want to join two resummation theories (High Energy with small p_T) to gain the benefits of both.

Many other things...

C. Muselli

A B > A B >

Conclusion

Conclusion and Outlook

Possible outlook:

- We want to apply all the machinery to other process (DY, Heavy quark production, jets...)
- We want to join two resummation theories (High Energy with small p_T) to gain the benefits of both.
- Many other things...

▲ロト ▲圖 ▶ ▲目 ▶ ▲目 ▶ ▲ 目 ● 今 ○ ○

UniMi

C. Muselli