

Time Resolved Optical Spectroscopy of Na₂IrO₃

Nicola Nembrini

What is $Na_2 IrO_3$?

 59
 60
 61
 62

 Pr
 Nd
 Pm
 Sm
Eu Gd Tb Dy Ho Er Tm Yb Lu Ce (144.91) 150.36 151.97 157.25 162.50 140.91 144.24 158.93 164.93 167.26 168.93 173.04 174.97 90 91 92 Pa U Np Pu Am Cm Bk Cf Es Fm Md No Th Lr

3d transition-metal oxides (Ti-Oxides, Mg-Oxides, Ni-Oxides, Cu-Oxides) are caracterized by 3d localized orbitals and small mass .

- Large on-site Coulomb repulsion, U (~5-6 eV)
- Small bandwith, W (~1 eV)
- Negligible spin-orbit coupling, SO

What is $Na_2 IrO_3$?

3d transition-metal oxides (Ti-Oxides, Mg-Oxides, Ni-Oxides, Cu-Oxides) are caracterized by 3d localized orbitals and small mass .

- Large on-site Coulomb repulsion, U (~5-6 eV)
- Small bandwith, W (~1 eV)
- Negligible spin-orbit coupling, SO

Na_2IrO_3 is 5d metal oxides:

- More delocalized orbitals (5d) → U ~ 1-2 eV
- large weight (SO ~ 1-2 eV) $H_{S.O.} = \frac{1}{2m^2c^2r}(\hat{S}\cdot\hat{L})\frac{dV}{dr} \rightarrow \mathbb{Z}$

In this system U, W and SO are comparable (about 1-2 eV)

Properties of Na₂IrO₃ at equilibrium

- Crystal field
- Spin orbit coupling
- Coulomb repulsion

Properties of Na₂IrO₃ at equilibrium

- Crystal field
- Spin orbit coupling

Coulomb repulsion

Properties of Na₂IrO₃ at equilibrium

- Crystal field
- Spin orbit coupling

Coulomb repulsion

Electronic band structure?

Physical properties of Na₂IrO₃ at equilibrium

• At T= 300K is a Mott Insulator (340meV)

Optical conductivity data (red line) [R. Comin, A. Damascelli et al.]

• At T=15K present an antiferromagnetic order

Possible antiferromagnetic pattern of Na₂IrO₃

How W, SO and U determine these properties?

Time-resolved optical spectroscopy

Non equilibrium spectroscopy

At equilibrium state the energy scales are comparable.

Bringing the system out of equilibrium is possible to decouple these contributions on time scale

Time resolved spectroscopy: Pump & Probe

Two ultrashort pulses (120 fs) are used .

- Pump pulse (1.5 eV) to excite the system
- Probe pulse (singlecolor or supercontinuum) to take a snapshot of system's variation reflectivity for several delay times than pump pulse

- Investigate dynamics of several ps (~10 ps)
- High time resolution of fs (~100 fs)

Time resolved spectroscopy Pump & Probe

Using a non-linear fiber is possible to generate ultrashort white-light pulses in order to have:

- Time-resolved measurements
- Frequency-resolved measurements

Single color pulse

Supercontinuum pulse

Experimental $\Delta R/R$

$$\frac{\Delta R}{R}(\omega,\tau) = \frac{R_{ex}(\omega,\tau) - R_{eq}(\omega)}{R_{eq}(\omega)}$$

Single color measurements as a function of T

Single color measurements as a function of T

Single color measurements as a function of T

The fit's results evidences that on T onset:

 $\boldsymbol{\tau}_{1}$ ~ constant at 200 fs $\boldsymbol{\mathsf{A}}_{_{1}}$ constant

 $τ_2$ variation 6→2 ps A₂ diverges at T_n

The experiment shows a temperature dipendence and a divengence at T_n

The dynamics on ns scale?

ASOPS tecnique

To achieve long-time windows (~10 *ns*) without losing the spatial coincidence is used ASOPS tecnique

• Dynamincs of several ns

ASynchronous OPtical Sampling tecnique

ASOPS measurements

Difference between single color mesurements:

- Pump pulse energy is 0.7 eV
- Time windows of ns
- Lower time resolution (100 fs)

ASOPS measurements

Difference between single color mesurements:

- Pump pulse energy is 0.7 eV
- Time windows of ns
- Lower time resolution (100 fs)

ASOPS measurements

Difference between single color measurements:

- Pump pulse energy is 0.7 eV
- Time windows of ns

∆R/R (x 10⁻⁶) ∆R/R (x 10⁻⁶)

-185-

0

• Lower time resolution (100 fs)

Supercontinuum measurements

Preliminary results and open problems

Differential fit to describe the variation of reflectivity

Oscillator width

Is possible to reproduce DR/R?

What are the parameter that changes?

Preliminary results and open problems

Differential fit to describe the variation of riflectivity

Conclusions

- time-resolved optical spectroscopy is possible to decopule the different energy scales
- Variation of optical properties near Antiferromagnetic transition

In future:

Try to understand

What are the involved parameters?

Why these oscillators energy?

Thanks for yours attention!