From Strings to AdS₄-Black holes

by Marco Rabbiosi

13 October 2015

From Strings to AdS4-Black holes

-

The four foundamental forces are described by

- ullet Electromagnetic, weak and strong $o {\it QFT}$ (Standard Model)
- Gravity \rightarrow **Differential Geometry** (General Relativity)
- These are two very *different mathematical frameworks*... ..but a common belief is the existance of a *foundamental microscopic theory* able to describe all together.
- **Canonical quatization of GR fails** because of problems with unitarity and renormalizability...

...however for a complete understanding of **Black holes** and **Big Bang** we need Quantum Gravity: they exibit a **singular behaviour in GR**, curvature scalars diverge.

• Characteristic lenght: $l_{ph} = \sqrt{\frac{\hbar G}{c^3}} \sim 10^{-35} m \rightarrow \text{direct}$ epxerimental data inaccessible...but on the theoretical side...

The four foundamental forces are described by

- Electromagnetic, weak and strong ightarrow *QFT* (Standard Model)
- Gravity \rightarrow **Differential Geometry** (General Relativity)
- These are two very *different mathematical frameworks*... ..but a common belief is the existance of a *foundamental microscopic theory* able to describe all together.
- **Canonical quatization of GR fails** because of problems with unitarity and renormalizability... ...however for a complete understanding of **Black holes** and

Big Bang we need Quantum Gravity: they exibit a *singular behaviour in GR*, curvature scalars diverge.

• Characteristic lenght: $l_{ph} = \sqrt{\frac{\hbar G}{c^3}} \sim 10^{-35} m \rightarrow \text{direct}$ epxerimental data inaccessible...but on the theoretical side...

< □ > < 同 > < 回 > <</p>

The four foundamental forces are described by

- ullet Electromagnetic, weak and strong $o {\it QFT}$ (Standard Model)
- Gravity \rightarrow **Differential Geometry** (General Relativity)
- These are two very *different mathematical frameworks*... ..but a common belief is the existance of a *foundamental microscopic theory* able to describe all together.
- **Canonical quatization of GR fails** because of problems with unitarity and renormalizability...

...however for a complete understanding of *Black holes* and *Big Bang* we need Quantum Gravity: they exibit a *singular behaviour in GR*, curvature scalars diverge.

• Characteristic lenght: $l_{ph} = \sqrt{\frac{\hbar G}{c^3}} \sim 10^{-35} m \rightarrow \text{direct}$ epxerimental data inaccessible...but on the theoretical side...

The four foundamental forces are described by

- ullet Electromagnetic, weak and strong $o {\it QFT}$ (Standard Model)
- Gravity \rightarrow **Differential Geometry** (General Relativity)
- These are two very *different mathematical frameworks*... ..but a common belief is the existance of a *foundamental microscopic theory* able to describe all together.
- **Canonical quatization of GR fails** because of problems with unitarity and renormalizability...

...however for a complete understanding of *Black holes* and *Big Bang* we need Quantum Gravity: they exibit a *singular behaviour in GR*, curvature scalars diverge.

• Characteristic lenght: $l_{ph} = \sqrt{\frac{\hbar G}{c^3}} \sim 10^{-35} m \rightarrow \text{direct}$ epxerimental data inaccessible...but on the theoretical side... Enlargment of ISO(3,1) → Coleman-Mandula No-go theorem.

4d SuperPoincarè algebra $\mathfrak{s}_{\mathscr{N}} = \{P_{\mu}, J_{\mu\nu}, Q^{i}_{\alpha} = \left(Q^{i}_{A}, \bar{Q}_{\dot{A}i}\right)^{t}, T_{r}\}$

$$\{Q_A^i, \bar{Q}_{\dot{B}j}\} = -2i(\sigma^{\mu})_{A\dot{B}}\delta_j^i P_{\mu}, \quad \{Q_A^i, Q_B^j\} = \varepsilon_{AB}(U^{ij} + iV^{ij}),$$

$$Q_A^i, T_r] = (U_r)_j^i Q_A^j \quad [Q_A^i, J_{\mu\nu}] = \frac{1}{2} \left(\sigma_{\mu\nu}\right)_A^B Q_B^i$$

plus complex conjugate relations and the usual Poincaré algebra.

- The *representations are* particular *multiplets* of fields with *Fermionic d.o.f. = Bosonic d.o.f* on shell.
- Very *strict conditions* on a supersymmetric field theory (dimensions, interactions...).

 Enlargment of ISO(3,1) → Coleman-Mandula No-go theorem.

4d SuperPoincarè algebra $\mathfrak{s}_{\mathscr{N}} = \{P_{\mu}, J_{\mu\nu}, Q^{i}_{\alpha} = \left(Q^{i}_{A}, \bar{Q}_{\dot{A}i}\right)^{t}, T_{r}\}$

$$\{Q_A^i, \bar{Q}_{\dot{B}j}\} = -2i(\sigma^{\mu})_{A\dot{B}}\delta_j^i P_{\mu}, \quad \{Q_A^i, Q_B^j\} = \varepsilon_{AB}(U^{ij} + iV^{ij}),$$

$$[Q_{A}^{i}, T_{r}] = (U_{r})_{j}^{i} Q_{A}^{j} \quad [Q_{A}^{i}, J_{\mu\nu}] = \frac{1}{2} (\sigma_{\mu\nu})_{A}^{B} Q_{B}^{i}$$

plus complex conjugate relations and the usual Poincaré algebra.

- The *representations are* particular *multiplets* of fields with *Fermionic d.o.f. = Bosonic d.o.f* on shell.
- Very *strict conditions* on a supersymmetric field theory (dimensions, interactions...).

 Enlargment of ISO(3,1) → Coleman-Mandula No-go theorem.

4d SuperPoincarè algebra $\mathfrak{s}_{\mathscr{N}} = \{P_{\mu}, J_{\mu\nu}, Q^{i}_{\alpha} = \left(Q^{i}_{A}, \bar{Q}_{\dot{A}i}\right)^{t}, T_{r}\}$

$$\{Q_A^i, \bar{Q}_{\dot{B}j}\} = -2i(\sigma^{\mu})_{A\dot{B}}\delta_j^i P_{\mu}, \quad \{Q_A^i, Q_B^j\} = \varepsilon_{AB}(U^{ij} + iV^{ij}),$$

$$[Q_A^i, T_r] = (U_r)_j^i Q_A^j \quad [Q_A^i, J_{\mu\nu}] = rac{1}{2} \left(\sigma_{\mu\nu}\right)_A^B Q_B^i$$

plus complex conjugate relations and the usual Poincaré algebra.

- The *representations are* particular *multiplets* of fields with *Fermionic d.o.f. = Bosonic d.o.f* on shell.
- Very *strict conditions* on a supersymmetric field theory (dimensions, interactions...).

M-theory

- Gauging supersymmetry requires diffeomorphism invariance, ...the symmetry of GR!...we obtain Supergravity!
- Moreover, the *quantum spectrum of a string* always has a massless spin 2 particle...again Gravity!

These ingredients lead to *M-theory*

- d = 11 supersymmetric theory of *strings and branes*.
- Beyond an ordinary QFT: a *net of duality between* superstring theories that describe it in different limits.

From Strings to AdS4-Black holes

Compactification

- Interesting to study the *low energy limit* $(\alpha' \rightarrow 0)$ of these theories, the *massless part of the spectrum*.
- The *effective field theory* results to be a *Supergravity* theory in d = 10, 11!
- Compactifications means they admit solutions like $\mathscr{C}_s \times \mathscr{M}_{d-s}$.
- They *link the different Supergravities* and their deformations *in all the dimensions*!
- In particular $\mathcal{N} = 2 \ d = 4 \ gauged \ supergravity$ comes from compactifications on a flux background.
- *We search black hole solutions* in the e.o.m. of this theory...main motivations:

Compactification

- Interesting to study the *low energy limit* (α'→0) of these theories, the *massless part of the spectrum*.
- The *effective field theory* results to be a *Supergravity* theory in *d* = 10,11!
- Compactifications means they admit solutions like $\mathscr{C}_s \times \mathscr{M}_{d-s}$.
- They *link the different Supergravities* and their deformations *in all the dimensions*!
- In particular $\mathcal{N} = 2 \ d = 4 \ gauged \ supergravity$ comes from compactifications on a flux background.
- *We search black hole solutions* in the e.o.m. of this theory...main motivations:

- Interesting to study the *low energy limit* $(\alpha' \rightarrow 0)$ of these theories, the *massless part of the spectrum*.
- The *effective field theory* results to be a *Supergravity* theory in *d* = 10,11!
- Compactifications means they admit solutions like $\mathscr{C}_s \times \mathscr{M}_{d-s}$.
- They *link the different Supergravities* and their deformations *in all the dimensions*!
- In particular $\mathcal{N} = 2$ d = 4 gauged supergravity comes from compactifications on a flux background.
- We search black hole solutions in the e.o.m. of this theory...main motivations:

$AdS_4 \times S^7 / \mathbb{Z}_k \iff d = 3 \mathcal{N} = 6 \text{ ABJM } U(N)_k \times U(N)_{-k}$

- Asintotically Ads₄ black hole solutions could be dual to some deformations of ABJM.
- Lifting to vacuas of M-theory...M2-branes wrapping a Riemann surface.
- Study of *microstates of black holes*.
- Integrability properties of classical GR in d = 4.

$$AdS_4 \times S^7 / \mathbb{Z}_k \iff d = 3 \mathcal{N} = 6 \text{ ABJM } U(N)_k \times U(N)_{-k}$$

- Asintotically Ads₄ black hole solutions could be dual to some deformations of ABJM.
- Lifting to *vacuas of M-theory*...*M*2-branes wrapping a Riemann surface.
- Study of *microstates of black holes*.
- Integrability properties of classical GR in d = 4.

$\mathcal{N} = 2 \, d = 4$ abelian gauged supergravity

• The *bosonic part* of the action (fermionic configuration to zero is a consistent truncation) *reads*

$$\mathscr{L} = \sqrt{-g} \left(\frac{R}{2} - h_{uv} \nabla_{\mu} q^{u} \nabla^{\mu} q^{v} - g_{i\bar{j}} \partial_{\mu} z^{i} \partial^{\mu} \bar{z}^{\bar{j}} + \frac{1}{4} I_{\Lambda \Sigma} H^{\Lambda \mu \nu} H^{\Sigma}_{\mu \nu} \right. \\ \left. + \frac{R_{\Lambda \Sigma} H^{\Lambda}_{\mu \nu} \varepsilon^{\mu \nu \rho \sigma} H^{\Sigma}_{\rho \sigma}}{8 \sqrt{-g}} - \left(4 h_{uv} k^{u}_{\Lambda} k^{v}_{\Sigma} X^{\Lambda} \bar{X}^{\Sigma} + \left(f^{\Lambda}_{i} g^{i\bar{j}} \bar{f}^{\Sigma}_{\bar{j}} - 3 X^{\Lambda} \bar{X}^{\Sigma} \right) P^{x}_{\Lambda} P^{x}_{\Sigma} \right)$$

$$-\frac{1}{4}\frac{\varepsilon^{\mu\nu\rho\sigma}}{\sqrt{-g}}\Theta^{\Lambda a}B_{\mu\nu a}\partial_{\rho}A_{\sigma\Lambda}+\frac{1}{32\sqrt{-g}}\Theta^{\Lambda a}\Theta^{b}_{\Lambda}\varepsilon^{\mu\nu\rho\sigma}B_{\mu\nu a}B_{\rho\sigma b}\Big),$$

• Where the covariant derivative of the hyperscalars is

$$\nabla_{\mu}q^{\mu} = \partial_{\mu}q^{\mu} + A^{\wedge}_{\mu}k^{\mu}_{\wedge} - A_{\wedge\mu}k^{\wedge\mu},$$

and $H^{\Lambda}_{\mu\nu} = F^{\Lambda}_{\mu\nu} + \frac{1}{2} \Theta^{\Lambda a} B_{\mu\nu a}$ are *modified field strenghts* (necessary for having also magnetically charged hyperscalars).

Ansatz

• We choose the more simple possible ansatz for the metric

$$ds^{2} = -e^{2U(r)}dt^{2} + e^{-2U(r)}dr^{2} + e^{2\psi(r)-2U(r)}d\Omega_{I}^{2},$$

where

$$f_l(\theta) = rac{1}{\sqrt{l}}\sin(\sqrt{l}\theta) = \left\{ egin{array}{cc} \sin heta\,, & l=1, \ \sinh heta\,, & l=-1, \end{array}
ight.$$

and for the *gauge fields*

$$\begin{split} A^{\Lambda} &= A_t^{\Lambda} dt - l p^{\Lambda} f_l'(\theta) d\phi \,, \quad A_{\Lambda} &= A_{\Lambda t} dt - l q_{\Lambda} f_l'(\theta) d\phi \,, \\ B^{\Lambda} &= 2 l p'^{\Lambda} f_l'(\theta) dr \wedge d\phi \,, \quad B_{\Lambda} &= -2 l q'_{\Lambda} f_l'(\theta) dr \wedge d\phi \\ H_{tr}^{\Lambda} &= e^{2U - 2\psi} l^{\Lambda \Sigma} (R_{\Lambda \Gamma} p^{\Gamma} - q_{\Sigma}) , \quad H_{\theta \phi}^{\Lambda} &= p^{\Lambda} f_l(\theta) \,. \end{split}$$

• Now all the fields defining this ansatz depend only on the radial coordinate r!

Effective field theory

 The substitution of this ansatz in the e.o.m. shows the possibility to derive these equations from a finite dimensional dynamical effective system

$$\begin{split} S_{eff} &= \int dr [e^{2\psi} (U'^2 - \psi'^2 + h_{uv} q'^u q'^v + g_{i\bar{j}} z'^i \bar{z}'^{\bar{j}} \\ &+ \frac{1}{4} e^{4U - 4\psi} \mathscr{Q}' \mathscr{H}^{-1} \mathscr{Q}') - V_{eff}], \end{split}$$

with

$$V_{eff} = -\left(e^{2U-2\psi}V_{BH} + e^{2\psi-2U}V_g - I
ight).$$

ensuring the constaints $H_{eff} = 0$ and $p^{\Lambda}k^{u}_{\Lambda} - q_{\Lambda}k^{u\Lambda} = 0$

- The e.o.m. now are switched from PDE to ODE...
- ...however highly coupled and of the second order...we can do something better!

Effective field theory

• The substitution of this ansatz in the e.o.m. shows the possibility to derive these equations from a finite dimensional *dynamical effective system*

$$\begin{split} S_{eff} &= \int dr [e^{2\psi} (U'^2 - \psi'^2 + h_{uv} q'^u q'^v + g_{i\bar{j}} z'^i \bar{z}'^{\bar{j}} \\ &+ \frac{1}{4} e^{4U - 4\psi} \mathscr{Q}' \mathscr{H}^{-1} \mathscr{Q}') - V_{eff}], \end{split}$$

with

$$V_{eff} = -\left(e^{2U-2\psi}V_{BH} + e^{2\psi-2U}V_g - I\right).$$

ensuring the constaints $H_{eff} = 0$ and $p^{\Lambda}k^{u}_{\Lambda} - q_{\Lambda}k^{u\Lambda} = 0$

- The e.o.m. now are switched from PDE to ODE...
- ...however highly coupled and of the second order...we can do something better!

• For a *n-dimensional dynamical system* like

$$S = \int dr \left(\frac{1}{2} g_{ab} \Phi^{\prime a} \Phi^{\prime b} - V(\Phi^{a}) \right),$$

with the condition H = 0, Hamilton-Jacobi equation for the principal function $W = W(\Phi^a; \alpha^1, ..., \alpha^n)$ reads

$$\frac{1}{2}g^{ab}\partial_aW\partial_bW=-V(\Phi^a).$$

- In general, too difficult to find the complete integral...easier to have a particular solution!
- In this case we have not solved completly the system, however we can *rewrite the action as sum of square*

$$S = \int dr \frac{1}{2} g_{ab} \left(\Phi'^{a} \pm g^{ac} \partial_{c} W \right) \left(\Phi'^{b} \pm g^{bd} \partial_{d} W \right) \,.$$

・ 同 ト ・ ヨ ト ・ ヨ

• For a *n-dimensional dynamical system* like

$$S = \int dr \left(\frac{1}{2} g_{ab} \Phi^{\prime a} \Phi^{\prime b} - V(\Phi^{a}) \right),$$

with the condition H = 0, Hamilton-Jacobi equation for the principal function $W = W(\Phi^a; \alpha^1, ..., \alpha^n)$ reads

$$\frac{1}{2}g^{ab}\partial_aW\partial_bW=-V(\Phi^a).$$

- In general, too difficult to find the complete integral...easier to have a particular solution!
- In this case we have not solved completly the system, however we can *rewrite the action as sum of square*

$$S = \int dr \frac{1}{2} g_{ab} \left(\Phi'^{a} \pm g^{ac} \partial_{c} W \right) \left(\Phi'^{b} \pm g^{bd} \partial_{d} W \right).$$

First order equations

Applaing this technique to S_{eff} showed before, we find:

$$\begin{split} U' &= \varepsilon (e^{U-2\psi} Re \tilde{\mathscr{Z}} + le^{-U} Im \tilde{\mathscr{L}}), \\ \psi' &= 2l \varepsilon e^{-U} Im \tilde{\mathscr{L}}, \\ z'^{i} &= \varepsilon e^{i\alpha} g^{i\bar{j}} \left(e^{U-2\psi} \bar{D}_{\bar{j}} \tilde{\mathscr{Z}} - ile^{-U} \bar{D}_{\bar{j}} \tilde{\mathscr{L}} \right), \\ q'^{u} &= -2l \varepsilon h^{uv} e^{-U} Im (e^{-i\alpha} \partial_{v} \mathscr{L}), \\ \mathscr{Q}' &= \varepsilon 4 e^{2\psi - 3U} \mathscr{H} \Omega Re \tilde{\mathscr{V}}, \end{split}$$

$$2e^{U}\langle Re\tilde{\mathcal{V}}, \mathscr{K}^{u}\rangle = -\varepsilon\langle \mathscr{A}, \mathscr{K}^{u}\rangle \quad \langle \mathscr{K}^{u}, \mathscr{P}^{x}\rangle = 0$$

Where the principal Hamilton-Jacobi function reads

$$W = e^{U} |\mathscr{Z} + i l e^{2\psi - 2U} \mathscr{Q}^{x} \mathscr{W}^{x}|,$$

 We have generalized the result of BPS analysis of Halmagyi, Petrini, Zaffaroni [arXiv : 1305.0730v3[hep - th]] and Dall'Agata, Gnecchi [arXiv : 1012.37565v1[hep - th]].

First order equations

Applaing this technique to S_{eff} showed before, we find:

$$\begin{split} U' &= \varepsilon (e^{U-2\psi} Re \tilde{\mathscr{Z}} + le^{-U} Im \tilde{\mathscr{L}}), \\ \psi' &= 2l \varepsilon e^{-U} Im \tilde{\mathscr{L}}, \\ z'^{i} &= \varepsilon e^{i\alpha} g^{i\bar{j}} \left(e^{U-2\psi} \bar{D}_{\bar{j}} \tilde{\mathscr{Z}} - ile^{-U} \bar{D}_{\bar{j}} \tilde{\mathscr{L}} \right), \\ q'^{u} &= -2l \varepsilon h^{uv} e^{-U} Im (e^{-i\alpha} \partial_{v} \mathscr{L}), \\ \mathscr{Q}' &= \varepsilon 4 e^{2\psi - 3U} \mathscr{H} \Omega Re \tilde{\mathscr{V}}, \end{split}$$

$$2e^{\mathcal{U}}\langle Re\tilde{\mathcal{V}}, \mathscr{K}^{u} \rangle = -\varepsilon \langle \mathscr{A}, \mathscr{K}^{u} \rangle \quad \langle \mathscr{K}^{u}, \mathscr{P}^{x} \rangle = 0$$

Where the principal Hamilton-Jacobi function reads

$$W = e^{U} |\mathscr{Z} + i l e^{2\psi - 2U} \mathscr{Q}^{x} \mathscr{W}^{x}|,$$

 We have generalized the result of BPS analysis of Halmagyi, Petrini, Zaffaroni [arXiv : 1305.0730v3[hep - th]] and Dall'Agata, Gnecchi [arXiv : 1012.37565v1[hep - th]].

Summary

- Very quickly, we have given an idea of what superstring theories/M-theory are.
- We have seen a formal development of the Einstein equations aims to find out new solutions.

...are both part of our work!

Outlook

- The next step is to solve the equations in some *particular* models and further extend the result to a large class of black holes: non-extremal, rotating and NUT-charged...
- ...however *many things can be again done* for a better understanding of the nature of Gravity, both at classical and quantum level!

Summary

- Very quickly, we have given an idea of what superstring theories/M-theory are.
- We have seen a formal development of the Einstein equations aims to find out new solutions.

...are both part of our work!

Outlook

- The next step is to solve the equations in some *particular* models and further extend the result to a large class of black holes: non-extremal, rotating and NUT-charged...
- ...however *many things can be again done* for a better understanding of the nature of Gravity, both at classical and quantum level!

Thank you for the attention!

From Strings to AdS4-Black holes

→ < Ξ → <</p>