Search for Dark Matter in Mono-Photon events with ATLAS

Maria Giulia Ratti
In collaboration with Silvia Resconi, Leonardo Carminati, Donatella Cavalli

FIRST YEAR PHD WORKSHOP - MILANO
OCTOBER 12TH, 2015
Why Dark Matter at the LHC?

- Compelling evidence of Dark Matter from astrophysical probes

- But what is the nature of the Dark Matter? How does it interact with Standard Model particles?

- Complementary strategies for the detection of DM particles:
 - Direct searches
 - Indirect searches
 - Production at colliders

- Grounding assumption:
 - DM and SM interact other than gravitationally, otherwise none of the strategies is effective
Mono-X Signatures

- DM goes out undetected
Mono-X Signatures

- DM goes out undetected
 => need a visible SM particle to tag the event

- Mono-X signatures: $E_T^{\text{miss}} + X = \text{jet, } \gamma, W, Z, H$
Mono-X Signatures

- DM goes out undetected
 - => need a visible SM particle to tag the event

- Mono-X signatures: $E_{T}^{\text{miss}} + X=\text{jet, } \gamma , W, Z, H$

- X object irradiated by the initial state or, in the case of electroweak bosons, involved in the interaction
Mono-Photon Search

- Cut & Count analysis
- Look for a deviation in data from prediction of the SM => Signal over Background
- Essential a very accurate background estimation
- Quantify the level of agreement/disagreement by means of a statistical analysis
- Set limits on parameter space of various models

Which SM processes have the same signature?

- $Z(\rightarrow \nu \nu) + \gamma$ irreducible background $O(70\%)$
- $W(\rightarrow l \nu) + \gamma$ $O(15\%)$
- $W/Z + \text{jets}$ electron or jet taken as a photon $O(15\%)$
- $\gamma + \text{jets}$ and other remaining bkgs $O(1\%)$

How are they estimated?

- from DATA/MC RATIOS in appropriate Control Regions
- purely DATA-DRIVEN techniques
- pure MC simulation
Mono-Photon Search

Signal Region (SR)
- Trigger and Event cleaning
- Jet cleaning
- Energetic photon with $p_T > 150$ GeV
- $E_T^{\text{miss}} > 150$ GeV
- $\Delta \varphi (\gamma, E_T^{\text{miss}}) > 0.4$
- Leading photon “tight”, isolated
- At most one jet well separated from the E_T^{miss}
- Veto on electrons and muons

Control Regions (CRs)
- Keep the same cuts as SR
- **revert one or more cuts** at a time to define regions enriched in a particular source of background

W/Z + γ Backgrounds

1 μ CR
- $W(\mu \nu) + \gamma$

2 μ CR
- $Z(\mu \mu) + \gamma$

2 ele CR
- $Z(\text{ee}) + \gamma$

- Data/MC ratios in the CRs
- Extrapolate to the SR
- Normalize the yields in the SR
Mono-Photon Search

Signal Region (SR)
- Trigger and Event cleaning
- Jet cleaning
- Energetic photon with $p_T > 150$ GeV
- $E_T^{miss} > 150$ GeV
- $\Delta \varphi (\gamma, E_T^{miss}) > 0.4$
- leading photon “tight”, isolated
- at most one jet well separated from the E_T^{miss}
- Veto on electrons and muons

Control Regions (CRs)
- keep the same cuts as SR
- revert one or more cuts at a time to define regions enriched in a particular source of background

Jets faking Photons
- Two-dimensional Sideband method
- $N_A^{bkg} = N_B \frac{N_D}{N_C}$

Electrons faking Photons
- $EFR = \text{probability of electron to fake a photon with a Tag & Probe method}$
- Scale a mono-electron CR with this probability

1ele CR no photon \times EFR
Data Analysis in ATLAS

- A huge and continuously evolving framework is needed for data analysis:
 - Big amount of data in various formats spread over the grid
 - Smaller datasets, called “derivations”, optimized for each analysis, to be replicated at local sites
 - Reconstruction software maintained by the Combined Performance groups
 - Analysis software developed by each analysis group for their needs
What is E_T^{miss}?

- $E_T^{\text{miss}} = \text{Missing Transverse Momentum}$
 - Negative vector sum of the transverse momenta of all detected particles
 - Global quantity of the event
 - In a parton-parton scatter the initial transverse momentum is ~ 0

 => Measured imbalance of the total transverse momentum is the handle for the invisible part of the event

Real E_T^{miss}:
- New particles
- Neutrinos

Fake E_T^{miss}:
- Miscalibrations
- Mismeasurements
- Limited detector acceptance
- Detector Noise

E_T^{miss} is the discriminating variable for many searches for new physics
Reconstructed and calibrated "physics objects":

- electrons, photons, taus, muons
 - Selected as recommended from the various CP groups
 - analyses can optimize the selections for their needs

- Jets:
 - Fully calibrated Anti-kt4 with $p_T > 20$ GeV
 - Anti-kt4 with $p_T > 7$ GeV for handling the overlap between physics object

Signal objects:

- tracks and clusters
\[\text{Reconstruction: Term by Term} \]

\[E_{x(y)}^{\text{miss}} = E_{x(y)}^{\text{miss}, e} + E_{x(y)}^{\text{miss}, \gamma} + E_{x(y)}^{\text{miss}, \tau} \]

\[+ E_{x(y)}^{\text{miss, jets}} + E_{x(y)}^{\text{miss, } \mu} + E_{x(y)}^{\text{miss, Soft}} \]

\[E_{x(y)}^{\text{miss, } k} = - \sum_k p_{x(y)}^k \]

- **Reconstructed and calibrated** "physics objects":
 - electrons, photons, taus, muons
 - Selected as recommended from the various CP groups
 - analyses can optimize the selections for their needs
 - **Jets:**
 - Fully calibrated Anti-kt4 with \(p_T > 20 \text{ GeV} \)

- **Tracks** from primary vertex => **TST** \(E_T^{\text{miss}} \)
- **Unmatched** clusters + soft jets => **CST** \(E_T^{\text{miss}} \)
E_T^{miss} Performance

- TST E_T^{miss} performing best
- Higher value of the E_T^{miss} and Soft Term at higher jet multiplicity
E_T^{miss} Performance: Resolution

- Width of the $E_{x,y}^{\text{miss}}$ is a sensitive quantity to pile-up effects
- Measured as a function of the number of primary vertices, N_{PV}, in 0-jet (left) and inclusive jet (right) topologies

In 0-jet events TST and Track E_T^{miss} perform very similar, insensitive to pile-up

In inclusive jet events, CST and TST E_T^{miss} both depend on pile-up

Track E_T^{miss} stable wrt pile-up
E_T^{miss} Performance: *Scale in $Z \rightarrow ll$*

- Well calibrated E_T^{miss} in $Z \rightarrow ll$ events projected along any axis should be zero.
- Projection of the E_T^{miss} onto the Z axis is sensitive to the imbalance between Hard and Soft part of the event.

Bias is bigger in 0-jet events indicating underestimation of the Soft Term.
- In events with jets, TST E_T^{miss} performs best.
Conclusions and Plans

- Analysis of mono-photon events in good progress:
 - Most analysis tools in place: derivations, software, selections and background estimation techniques
 - Big effort in understanding the E_T^{miss}, invisible part of the collision event
 - Work in progress in the statistical interpretation of the results
 - Almost 2.5 fb$^{-1}$ of data already collected by ATLAS and ready for analysis
 => will need the entire 2015 data to improve the Run 1 results
Background projections with 5 fb$^{-1}$

<table>
<thead>
<tr>
<th>table(results).yields channel</th>
<th>SR</th>
<th>ONEmuCR</th>
<th>TWOneleCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitted bkg events</td>
<td>277.06 ± 28.72</td>
<td>134.08 ± 11.58</td>
<td>28.87 ± 3.91</td>
</tr>
<tr>
<td>Fitted Zmunu gamma events</td>
<td>188.08 ± 28.28</td>
<td>0.79 ± 0.12</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>Fitted Zgamma events</td>
<td>2.76 ± 0.42</td>
<td>10.89 ± 1.62</td>
<td>26.38 ± 3.91</td>
</tr>
<tr>
<td>Fitted Wgamma events</td>
<td>43.67 ± 5.16</td>
<td>102.44 ± 11.74</td>
<td>0.52 ± 0.06</td>
</tr>
<tr>
<td>Fitted Wjets events</td>
<td>23.18 ± 0.54</td>
<td>15.90 ± 0.21</td>
<td>0.21 ± 0.00</td>
</tr>
<tr>
<td>Fitted Zjets events</td>
<td>1.31 ± 0.03</td>
<td>0.26 ± 0.00</td>
<td>1.09 ± 0.03</td>
</tr>
<tr>
<td>Fitted gammajets events</td>
<td>17.70 ± 0.42</td>
<td>3.81 ± 0.05</td>
<td>0.66 ± 0.02</td>
</tr>
<tr>
<td>Fitted dijets events</td>
<td>0.37 ± 0.01</td>
<td>0.00 ± 0.00</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>MC exp. SM events</td>
<td>277.06</td>
<td>134.08</td>
<td>28.87</td>
</tr>
<tr>
<td>MC exp. Zmunu gamma events</td>
<td>188.08</td>
<td>0.79</td>
<td>0.00</td>
</tr>
<tr>
<td>MC exp. Zgamma events</td>
<td>2.76</td>
<td>10.89</td>
<td>26.38</td>
</tr>
<tr>
<td>MC exp. Wgamma events</td>
<td>43.67</td>
<td>102.44</td>
<td>0.52</td>
</tr>
<tr>
<td>MC exp. Wjets events</td>
<td>23.18</td>
<td>15.90</td>
<td>0.21</td>
</tr>
<tr>
<td>MC exp. Zjets events</td>
<td>1.31</td>
<td>0.26</td>
<td>1.09</td>
</tr>
<tr>
<td>MC exp. gammajets events</td>
<td>17.70</td>
<td>3.81</td>
<td>0.66</td>
</tr>
<tr>
<td>MC exp. dijets events</td>
<td>0.37</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Tabella 2: SR expected yields for 5 fb$^{-1}$, fixed isolation cut on the photon
M.G. Ratti - Search for Dark Matter in mono-photon events with ATLAS

Mono-Photon Studies

ATLAS Preliminary

Data 2015

\[\sqrt{s} = 13 \text{ TeV}, \int L dt = 71 \text{ pb}^{-1} \]

Photon + \(E_T^{\text{miss}} \) selection

ATLAS Work in Progress

- \(Z(\rightarrow \nu
\nu) + \gamma \)
- \(Z(\rightarrow \mu
\mu) + \gamma \) muons invisible
- \(Z(\rightarrow ee) + \gamma \) electrons invisible

Jet Veto Efficiency

- \(p_T > 30 \text{ GeV} \)
- \(p_T > 40 \text{ GeV} \)
- \(p_T > 50 \text{ GeV} \)
TST Soft term systematics

- Systematics on the E_T^{miss} measurement quantify the level of agreement between data and MC.
- Component originated from the measurement of the other physics objects can be propagated through the E_T^{miss} computation.
- TST Soft term uncertainties are provided on MC-based studies.
- Expected to cover discrepancies between data and MC at 13 TeV:
 - Modelling of the generators
 - Full vs Fast simulation
 - Experimental conditions: geometry of the detector, bunch spacing …
TST Soft term systematics

Soft Term projections onto p_T^{hard}:
- Mean of longitudinal component
 => scale uncertainty
- RMS of transverse and longitudinal components
 => resolution uncertainty
E_T^{miss} Performance: Resolution

- $W \rightarrow l\nu$ inclusive jets (left), ttbar inclusive jets (right)

- In inclusive jet events, all variants suffer by the increased event activity in higher pile-up regions
- TST and CST show similar values of the resolution among various topologies, while Track resolution suffers in high-jet multiplicity events
TST E_T^{miss}: Resolution and Scale in 2015 data and MC

- Agreement between data and MC with very first data, $Z \rightarrow \mu\mu$ events
Higher p_T threshold for jets going into the jet term can improve the resolution at high N_{PV}

but also increases the bias at all p_T^Z
There must be a mechanism to keep track of the overlaps between physics/signal objects:

- **Run 2 Association Map**:
 - Contains the spatial association of each physics object to anti-kt4 jets
 - Within each jet, object overlaps are identified
 - Unassociated tracks/clusters go into the core soft terms