Search for Dark Matter in Mono-Photon events with ATLAS

Maria Giulia Ratti

In collaboration with Silvia Resconi, Leonardo Carminati, Donatella Cavalli

FIRST YEAR PHD WORKSHOP - MILANO OCTOBER 12TH, 2015

+ Why Dark Matter at the LHC?

- Compelling evidence of Dark Matter from astrophysical probes
- But what is the nature of the Dark Matter? How does it interact with Standard Model particles ?
- Complementary strategies for the detection of DM particles:
 - * Direct searches
 - Indirect searches
 - * Production at colliders

• Grounding assumption:

* DM and SM interact other than gravitationally, otherwise none of the strategies is effective

+ Mono-X Signatures

 \odot DM goes out undetected

3

+ Mono-X Signatures

• DM goes out undetected

=> need a visible SM particle to tag the event

• Mono-X signatures: $E_T^{miss} + X = jet, \gamma, W, Z, H$

+ Mono-X Signatures

• DM goes out undetected

=> need a visible SM particle to tag the event

• Mono-X signatures: $E_T^{miss} + X = jet, \gamma, W, Z, H$

• X object irradiated by the initial state or, in the case of electroweak bosons, involved in the interaction

M.G. Ratti - Search for Dark Matter in mono-photon events with ATLAS

+ Mono-Photon Search

- Cut & Count analysis
- Look for a deviation in data from prediction of the SM => Signal over Background
- Essential a very accurate background estimation
- Quantify the level of agreement/disagreement by means of a statistical analysis
- Set limits on parameter space of various models

+ Mono-Photon Search

Signal Region (SR)

- Trigger and Event cleaning
- Jet cleaning
- Energetic photon with $p_T > 150 \text{ GeV}$
- $E_T^{miss} > 150 \text{ GeV}$
- $\Delta \phi(\gamma, E_T^{\text{miss}}) > 0.4$
- leading photon "tight", isolated
- Veto on electrons and muons

Control Regions (CRs)

- keep the same cuts as SR
- revert one or more cuts at a time to define regions enriched in a particular source of background

W/Z + γ Backgrounds

- * Data/MC ratios in the CRs
- * Extrapolate to the SR
- * Normalize the yields in the SR

+ Mono-Photon Search

Signal Region (SR)

- Trigger and Event cleaning
- Jet cleaning
- Energetic photon with $p_T > 150 \text{ GeV}$
- $E_T^{miss} > 150 \text{ GeV}$
- $\Delta \phi(\gamma, E_T^{\text{miss}}) > 0.4$
- leading photon "tight", isolated
- Veto on electrons and muons

Control Regions (CRs)

- keep the same cuts as SR
- revert one or more cuts at a time to define regions enriched in a particular source of background

Jets faking Photons

Electrons faking Photons

vents / 2

- EFR = probability of electron to fake a photon with a Tag & Probe method
- Scale a monoelectron CR with this probabulity

+ Data Analysis in ATLAS

 A huge and continuously evolving framework is needed for data analysis:

- * Big amount of data in various formats spread over the grid
- Smaller datasets, called "derivations", optimized for each analysis, to be replicated at local sites
- * Reconstruction software maintained by the Combined Performance groups
- * Analysis software developed by each analysis group for their needs

+ What is $E_{\rm T}^{\rm miss}$?

- $\odot E_{\mathrm{T}}^{\mathrm{miss}} = \mathrm{Missing} \, \mathrm{Transverse} \, \mathrm{Momentum}$
 - * Negative *vector* sum of the *transverse* momenta of *all* detected particles
 - * Global quantity of the event
 - * In a parton-parton scatter the initial transverse momentum is $\simeq 0$

=> Measured imbalance of the total transverse momentum is the handle for the *invisible* part of the event

Fake $E_{\mathrm{T}}^{\mathrm{miss}}$:

- Miscalibrations
- Mismeasurements
- Limited detector acceptance
- Detector Noise

+ E_T^{miss} Reconstruction: Ingredients

- * Reconstructed and calibrated "physics objects":
 - electrons, photons, taus, muons
 - Selected as recommended from the various CP groups
 - analyses can optimize the selections for their needs
 - **Jets**:

 - Fully calibrated Anti-kt4 with p_T > 20 GeV
 Anti-kt4 with p_T > 7 GeV for handling the overlap between physics object

* Signal objects:

• tracks and clusters

+ $E_{\rm T}^{\rm miss}$ Reconstruction: Term by Term

$$E_{x(y)}^{\text{miss}} = E_{x(y)}^{\text{miss, e}} + E_{x(y)}^{\text{miss, }\gamma} + E_{x(y)}^{\text{miss, }\tau}$$

+
$$E_{x(y)}^{\text{miss, jets}} + E_{x(y)}^{\text{miss, }\mu}$$
 + $E_{x(y)}^{\text{miss, Soft}}$

$$E_{\mathbf{x}(\mathbf{y})}^{\text{miss, k}} = - \sum_{\mathbf{k}} p_{\mathbf{x}(\mathbf{y})}^{\mathbf{k}}$$

* Reconstructed and calibrated "physics objects":

- o electrons, photons, taus, muons
 - Selected as recommended from the various CP groups
 - analyses can optimize the selections for their needs
- **Jets**:

Fully calibrated Anti-kt4 with p_T > 20 GeV

- * **Tracks** from primary vertex
- * Unmatched clusters + soft jets

 $=> \mathbf{TST} \ \boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}}$ $=> \mathbf{CST} \ \boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}}$

- * TST E_{T}^{miss} performing best
- * Higher value of the E_{T}^{miss} and Soft Term at higher jet multiplicity

+ E_T^{miss} Performance: Resolution

- * Width of the $E_{x,v}^{\text{miss}}$ is a sensitive quantity to pile-up effects
- Measured as a function of the number of primary vertices, N_{PV}, in 0-jet (left) and inclusive jet (right) topologies

- * In 0-jet events TST and Track E_{T}^{miss} perform very similar, insensitive to pileup
- * In inclusive jet events, CST and TST $E_{\mathrm{T}}^{\mathrm{miss}}$ both depend on pile-up
- * Track $E_{\mathrm{T}}^{\mathrm{miss}}$ stable wrt pile-up

- Bias is bigger in 0-jet events indicating underestimation of the Soft Term
- * In events with jets, TST E_{T}^{miss} performs best

+ Conclusions and Plans

• Analysis of mono-photon events in good progress:

- Most analysis tools in place: derivations, software, selections and background estimation techniques
- Big effort in understanding the E_T^{miss}, invisible part of the collision event
- * Work in progress in the statistical interpretation of the results
- Almost 2.5 fb⁻¹ of data already collected by ATLAS and ready for analysis

=> will need the entire 2015 data to improve the Run 1 results

BACK-UP

M.G. Ratti - Search for Dark Matter in mono-photon events with ATLAS

PhD Workshop 2015

+ Background projections with 5 fb⁻¹

10 ²	-		ATLAS Simulation ∫ Ldt = 5.0 fb ⁻¹ , √s= 13 TeV									
10								Ϋ́Υ	γ + jets / + jets + jets and α /γ →vv + γ	lijets		
1	-]	1				
10 ⁻¹	200	300	400	<mark> </mark> 500	<mark></mark> 600	700	800	900	1000	1100 р _т [GeV	×10 ³	

Signal Region cuts

Signal Region cuts

table.results.yields channel	SR	ONEmuCR	TWOmuCR	TWOeleCR	
Fitted bkg events	277.06 ± 28.72	134.08 ± 11.58	28.87 ± 3.91	31.23 ± 4.08	
Fitted Znunugamma events	188.08 ± 28.28	0.79 ± 0.12	0.00 ± 0.00	0.00 ± 0.00	
Fitted Zgamma events	2.76 ± 0.42	10.89 ± 1.62	26.38 ± 3.91	27.60 ± 4.05	
Fitted Wgamma events	43.67 ± 5.16	102.44 ± 11.74	0.52 ± 0.06	0.48 ± 0.06	
Fitted Wjets events	23.18 ± 0.54	15.90 ± 0.21	0.21 ± 0.00	0.01 ± 0.00	
Fitted Zjets events	1.31 ± 0.03	0.26 ± 0.00	1.09 ± 0.03	2.92 ± 0.18	
Fitted gammajets events	17.70 ± 0.42	3.81 ± 0.05	0.66 ± 0.02	0.21 ± 0.01	
Fitted dijets events	0.37 ± 0.01	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	
MC exp. SM events	277.06	134.08	28.87	31.23	
MC exp. Znunugamma events	188.08	0.79	0.00	0.00	
MC exp. Zgamma events	2.76	10.89	26.38	27.60	
MC exp. Wgamma events	43.67	102.44	0.52	0.48	
MC exp. Wjets events	23.18	15.90	0.21	0.01	
MC exp. Zjets events	1.31	0.26	1.09	2.92	
MC exp. gammajets events	17.70	3.81	0.66	0.21	
MC exp. dijets events	0.37	0.00	0.00	0.00	

t

I N

Tabella 2: SR expected yields for 5 $\rm fb^{-1}$, fixed isolation cut on the photon

Mono-Photon Studies

+ TST Soft term systematics

- * Systematics on the E_{T}^{miss} measurement quantify the level of agreement between data and MC
- * Component originated from the measurement of the other physics objects can be propagated through the $E_{\rm T}^{\rm miss}$ computation
- * TST Soft term uncertainties are provided on MC-based studies
- * Expected to cover discrepancies between data and MC at 13 TeV
 - Modelling of the generators
 - Full vs Fast simulation
 - Experimental conditions: geometry of the detector, bunch spacing ...

+ TST Soft term systematics

Soft Term projections onto p_T^{hard}:

- Mean of longitudinal component
 => scale uncertainty
- RMS of transverse and longitudinal components

=> resolution uncertainty

+ E_T^{miss} Performance: Resolution

♦ W → /v inclusive jets (left), ttbar inclusive jets (right)

- In inclusive jet events, all variants suffer by the increased event activity in higher pile-up regions
- TST and CST show similar values of the resolution among various topologies, while Track resolution suffers in high-jet multiplicity events

+ TST *E*_T^{miss} : *Resolution and Scale in* 2015 data and MC

 \Rightarrow Agreement between data and MC with very first data, Z $\Rightarrow \mu\mu$ events

+ Jet Selection in $E_{\rm T}^{\rm miss}$

 $\diamond~$ Higher $p_{_T}$ threshold for jets going into the jet term can improve the resolution at high $N_{_{\rm PV}}$

 \diamond but also increases the bias at all p_T^Z

+ E_T^{miss} Reconstruction: Association Map

⇒ There must be a mechanism to keep track of the overlaps between physics/signal objects:

- * Run 2 Association Map:
 - Contains the spatial association of each physics object to anti-kt4 jets
 - Within each jet, object overlaps are identified
 - Unassociated tracks/clusters go into the core soft terms

