X-ray photoelectron study on $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta} \text{ and } \\ La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta} \text{ before and after thermal treatment and permeation test}$

Patrizia Rosa¹

¹Dipartimenti di Fisica Università degli Studi di Milano "Borsa giovani" tematiche materiali avanzati per applicazioni strutturali in collaboration with R.S.E.

November 18th 2014

Oxygen production Usage

- oxyfuel combustion process (metal, glass production)
- gasification
- medical application

Production methods

- cryogenic distillation
 - large scale plant
 - high investment
 - high energy consumption
- pressure swing adsorption (PSA)
 - low investment
 - low energy consumption
 - slow cycle speed (regeneration process)

membrane separation

- low energy consumption
- no loss in selectivity efficiency
- issue in structural and chemical stability (change in mechanical proprieties)

Perovskite

► A B O₃

• Goldshmidt's tolerance factor :

 $t=rac{R_A+R_O}{\sqrt{2}(R_B+R_0)}$,

t > 1 hexagonal $0.9 \le t \le 1$ cubic $0.71 \le t \le 0.9$ rhombohedral t < 0.71 different structures

R = ionic radius

- different valence in cations
- very flexible material in properties

Perovskite in oxygen separation

- cubic or hexagonal structure
- ▷ oxygen vacancies $A \models O_{3-\delta}$
- ► Sr (CoFe) $O_{3-\delta}$
- structural instability
- Ba_{0.5}Sr_{0.5} Co_{0.8}Fe_{0.2} O_{3-δ} (BSCF) La_{0.6}Sr_{0.4} Co_{0.2}Fe_{0.8} O_{3-δ} (LSCF)

The samples

powder sintering at high temperature (Forschung-Zentrum Jülich)

・ロト (四) (三) (三) (三) (日) (日)

Experimental condition

- annealing
 - phase transition Vs temperature (XRD)
 - $\circ~$ thermal stress 780 $^\circ\text{C}$ for 1300 hr
- permeation
 - $\circ~$ 750-1010 $^{\circ}\text{C}$
 - feed gas O_2/N_2 250 Ncm³/min
 - sweep gas He 50 Ncm³/min

Crystal structure

- room temperature
 - BSCF cubic
 - LSCF rombohedral
- ▶ high temperature (700-850 °C)
 - $\circ \ \mathsf{BSCF} \ \mathsf{cubic} \to \mathsf{hexagonal}$
 - $\circ \ \ \text{LSCF rombohedral} \to \text{cubic}$

XPS

Specific fingerprint of elements Photoelectrons

$$B.E. = h\nu - E_k - \phi_{work}$$

Auger electrons

Inelastic Background

X-ray photoelectron

XPS setup

Source

- Mg X-Ray
- \circ energy K_{α 1,2} (2p \rightarrow 1s) 1253.6 eV
- width $\Delta E_s = 0.70 \text{ eV}$
- \triangleright Measurement chamber ($P < 10^{-8}$ mbar)
 - mean free path $\lambda \propto \frac{1}{n}$ (n= density of molecules)
 - avoid damage
 - minimize surface contamination
- Electron energy analyzer hemispherical
 - single channel
 - $\frac{\Delta E}{E_{pass}} = k$ where $\Delta E = resolution$

Wide spectra BSCF

Pass energy $E_p = 100$ eV, energy step 1 eV

X-ray photoelectron

Pass energy 30 eV step energy 0.025 eV

X-ray photoelectron

BSCF evolution

As received

- two chemical compounds compatible with Ba in BSCF and BaO
- $\,\circ\,$ Co has a valence of 3+
- Annealed sample
 - \circ BaCO₃ on surface
 - $\circ~$ Co has a valence of 2+ on surface
- Feed exposed face (air) and sweep face
 - $\circ\,$ peaks compatible with Ba in BSCF, BaO and BaO_2 $\,$
 - $\circ~$ Co has a valence of 4+

The Co behavior confirms the XRD results

Wide spectra LSCF

Pass energy $E_p = 100$ eV, step energy 1 eV

High resolution LSCF spectra

C1s 2.0 asrec 1.5 -Counts air_sp 1.0 sweep_nsp 0.5 sweep_sp1 0.0 sweep_sp2 288 286 284 282 290 Binding energy

Pass energy 30 eV step energy 0.025 eV

X-ray photoelectron

Observation on LSCF high resolution spectra

▶ 01s

- peaks at about 529 eV are from oxygen in lattice
- peaks in sweep face without sputtering at about 527.5 eV are from electron-rich oxygen in lattice
- ► La3d
 - main peak 3d⁹4f⁰
 - $\circ\,$ the other two peaks are multiplet splitting phenomena of state $\,3d^94f^1$ and hole in ligand site 1
 - in all sample these peaks are very stable

¹E.Talik et al., MAT SCI ENG B-SOLID, 2014, 182, 74-80

Permeation results

- B1 120 h at 820 °C
- B2 215 h at 820 °C
- L2 215 h 820 °C

Conclusions

► BSCF

- can work also a room temperature
- better permeation than LSCF
- more structural change in work condition

► LSCF

- $\circ\,$ can work at temperature higher than 700 $^\circ\text{C}$
- less permeation than BSCF
- more structural/electronic stability than BSCF

Thank you for your attention

X-ray photoelectron

Spectral features

- Spin-orbit splitting
 - $\circ\;$ total angular momentum $j_{\pm}=l\pm 1/2$
 - degeneracy $2j_{\pm} + 1$
 - peaks area ratio $\frac{A_{j_-}}{A_{j_+}} = \frac{2j_-+1}{2j_++1}$
- Shake-up: the outgoing electron interacts with a valence electrons losing kinetic energy.
- Chemical shift is due to a change in core binding energy
 - electrostatic shielding of nuclear charge from all other electron
 - removal (increase B.E.) or addition (decrease B.E.) of electronic charge as a result of bonding
- Surface charging: an excess of positive charge shift BE to higher value

Quantification in XPS

$$n = \frac{I}{f\sigma\theta y\lambda AT}$$

$$n_x = \frac{I_x}{S_x}$$

 S_{x} is the atomic sensitive factor

with these elements we can evaluate

 \succ concentration of elements C_x =

$$=\frac{\frac{l_x}{S_x}}{\sum_i \frac{l_i}{S_i}}$$

deconvolve overlapping signals

n = number of atom per cm³ I = number of photoelectrons per second f = X-ray flux photons/cm² σ = cross section y = efficiency of photoelectron process λ = inelastic mean free path A = area of sample T = detection frequency

Crystal structure

Johnson-Mehl-Avrami $\alpha_{hex}(t) = \alpha_{hex}(\infty)(1 - e^{-kt^n}), n = 1$

Aging temperature	$\alpha_{hex}(\infty)$	Characteristic time $\tau = \frac{1}{k}$ days
BSCF 780 °C	32.2%	26.3
BSCF 800 °C	21.2%	14.7
BSCF 820 °C	11.7%	11.5
BSCF 800 °C Literature	52.3%	17.8

Fitting high resolution spectra

Shirley background

peak shape Voigt that is a convolution of

- Gaussian line shape
 - source width
 - analyzer resolution
- Lorentz line shape
 - hole life-time

Our fit are obtained :

- background subtraction
- normalized area for each elements in each samples
- aligned C1s main peak at 284.8 eV

Sputtering

- reduce surface contamination
- Ar ions
- ▶ at the energy of 3.5 keV
- for 3 min

Measurement summary

Treatment	BSCF name	LSCF name
as received sample before sputtering	asrec_nsp	asrec_nsp
as received sample after sputtering	asrec	asrec
780 °C for 1300 hr before sputtering	B9_nsp	
780 °C for 1300 hr after sputtering	B9_sp	
permeated membrane sweep face before sputtering	sweep_nsp	sweep_nsp
permeated membrane sweep face after a first sputtering	sweep_sp	sweep_sp1
permeated membrane sweep face after a second sputtering		sweep_sp2
permeated membrane feed face before sputtering	air_nsp	air_nsp
permeated membrane feed face after sputtering	air_sp	air_sp

X-ray photoelectron

Properties

- catalytic property (oxidation-reduction process)
- high electronic/ionic conductivity (oxygen separation)
- ► superconductivity ²
- colossal magneto-resistance²
- ► ferroelectricity ²

²A. S. Bhalla, R. Y. Guo and R. Roy, Mater. Res. Innovations, 2000, 4, 3–26