Schramm-Loewner Equation and Connections with Statistical Mechanics

Pietro Rotondo

October 16th, 2012

Outline

- Phase transitions (spontaneous symmetry breaking, etc.).
- At the critical temperature: conformal invariance.
- New rigorous approach is given by Schramm-Loewner equation (SLE).

Statistical Mechanics: Ising Model Interfaces

■ Spins ± 1 on each site of a square lattice. Configuration $\sigma \in\{+1,-1\}^{\text {sites }}$.

- Energy: $\mathcal{H}[\sigma]=-\sum_{\langle i, j\rangle} \sigma_{i} \sigma_{j}$.
- Partition function: $Z_{\beta}=\sum_{\sigma} e^{-\beta \mathcal{H}[\sigma]},\left(\beta=\frac{1}{T}\right)$.

$T<T_{c}$

$T \sim T_{c}$

$T>T_{c}$

Statistical Mechanics: Honeycomb Lattice Percolation

- Choose two boundary points x, y and fix boundary conditions.
- Colour the plaquettes in the bulk white or red, with the same probability.

Riemann Mapping Theorem

Theorem

$U \subset \mathbb{C}$ simply connected open subset, then there exists a biholomorfic (bijective and holomorfic) mapping f from U onto the open unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.

- Holomorfic means Conformal: the map f preserves the angles between curves.
- Any two open simply connected subsets of \mathbb{C}, D and D^{\prime}, can be mapped conformally into each other.

Loewner Equation

■ Let $\gamma:[0, \infty) \rightarrow \overline{\bar{H}}$ (upper half complex plane) be a simple curve (no self intersections) with $\gamma(0)=0, \gamma(0, \infty) \subseteq \mathbb{H}$ and $\gamma(t) \rightarrow \infty$ as $t \rightarrow \infty$ (to avoid pathological curves, e.g. spirals).
■ For each $t \geq 0$ let $\mathbb{H}_{t}:=\mathbb{H} \backslash \gamma[0, t]$ be the slit half plane and let $g_{t}: \mathbb{H}_{t} \rightarrow \mathbb{H}$ be the corresponding Riemann map.

- It is always possible to choose a normalization for g_{t} and a parametrization for γ in such a way that as $z \rightarrow \infty$

$$
g_{t}(z)=z+\frac{2 t}{z}+O\left(\frac{1}{z^{2}}\right)
$$

Loewner Equation

$$
U_{t}=g_{t}(\gamma(t))
$$

■ The curve $\gamma:[0, \infty) \rightarrow \overline{\bar{H}}$ evolves from $\gamma(0)$ to $\gamma(t)$.
■ $\mathbb{H}_{t}:=\mathbb{H} \backslash \gamma[0, t], g_{t}: \mathbb{H}_{t} \rightarrow \mathbb{H}$.
$\square U_{t}:=g_{t}(\gamma(t))$, the image of the tip $\gamma(t)$ (driving function).
$■$ Theorem: $U_{t} \subseteq \mathbb{R}$ for every $t \geq 0$ (Moreover U_{t} is continuous).

Loewner Equation

Theorem (Loewner 1923)

For fixed $z, g_{t}(z)$ is the solution of the ODE:

$$
\frac{\partial g_{t}(z)}{\partial t}=\frac{2}{g_{t}(z)-U_{t}}, \quad g_{0}(z)=z
$$

- Some examples for deterministic U_{t} :
- $U(t)=0 \Rightarrow g(t)=\sqrt{z^{2}+4 t} \Rightarrow \gamma(t)=2 i \sqrt{t}$.
- $U(t)=\sqrt{k t}, \gamma(t)$ is a straight line at fixed angle with respect to the real axis.

Stochastic Loewner Equation (aka Schramm LE)

- Promote U_{t} to be a stochastic process.
- It is possible to define a probability measure on the curves taking values in \mathbb{H}.
■ Domain Markov Property (DMP): a curve doesn't make difference between its past and its boundary (roughly speaking).

Theorem (Schramm 2000)

If we require Cl and DMP the only consistent stochastic process is a standard one dimensional Brownian motion: $U_{t}=\sqrt{k} B_{t}$.

- The ensemble of curves generated with the variance parameter k is called SLE_{k}.

Numerical Investigations

- Perform a backward integration from the initial condition: $g_{t}\left(\gamma_{t}\right)=U_{t}$, solving the finite difference equation:

$$
g_{t}-g_{t-\Delta t}=\frac{2}{g_{t-\Delta t}-U_{t-\Delta t}}
$$

$S_{1} E_{1}$

$\operatorname{SLE}_{\frac{9}{2}}$

$\operatorname{SLE}_{\frac{17}{2}}$

Exact Results: SLE Phases

Theorem (Schramm, Lawler, Werner 2004; Beffara 2008)

With Probability one:
■ $0<k \leq 4, \gamma(t)$ is a random, simple curve (no double points) avoiding \mathbb{R}.

- $4<k<8, \gamma(t)$ is not simple, it has double points, but does not cross itself. These paths do hit \mathbb{R}.
- $k \geq 8, \gamma(t)$ is also space filling.

With probability one, the Haussdorff dimension of SLE_{k} trace is:

$$
\min \left\{1+\frac{k}{8}, 2\right\}
$$

Exact Results: SLE, Scaling Limit and CFT

- SLE_{6} is related to Critical percolation on the triangular lattice (Smirnov 2001).
- SLE_{3} is the scaling limit of interfaces for the Ising model (Smirnov 2008).
- $\mathrm{SLE}_{\frac{8}{3}}$ is conjectured to be the scaling limit for the self avoiding random walk (Lawler, Schramm, Werner 2004).
■ When SLE_{k} corresponds to some CFT, the parameter k is related to the central charge c of the CFT by:

$$
c=\frac{(8-3 k)(k-6)}{2 k}, \quad(\text { Bauer, Bernard 2002) }
$$

Perspectives and current work

SLE is a new rigorous approach to study criticality in two dimensions.

- SLE is a stochastic equation \Longrightarrow Path integral formulation.
- Preliminary result: connection with a QM one-dimensional problem of a particle in an external potential $V(x) \propto \frac{1}{x^{2}}$.
- Other non-trivial generalizations (q-deformed SLE, fractional derivatives).

Domain Markov Property

- $B_{t} \Rightarrow \mathbb{P}_{\mathbb{H}}^{0, \infty}(\gamma)$, probability measure of the curves on \mathbb{H}.
- By a Conformal transformation $g_{t}^{-1}: g_{t}^{-1}(\mathbb{H})=\mathbb{H}_{t}$, $g_{t}^{-1}(0)=\gamma(t), g_{t}^{-1}(\infty)=\infty$
- Then $\mathbb{P}_{\mathbb{H}}^{0, \infty} \Rightarrow \mathbb{P}_{\mathbb{H}_{t}}^{\gamma(t), \infty}$

■ Given a curve $\gamma[0, \infty]=\gamma[0, t] \cdot \gamma[t, \infty]$, Domain Markov property is the statement:

$$
\mathbb{P}_{\mathbb{H}}^{0, \infty}(\gamma \mid \gamma[0, t])=\mathbb{P}_{\mathbb{H}_{t}}^{\gamma(t), \infty}(\gamma)
$$

Brownian motion (Wiener process)

- Characterization of the Brownian motion B_{t} :
- $B_{0}=0$.

■ The function $t \rightarrow B_{t}$ is continuous with probability one.

- B_{t} has indipendent increments with $B_{t}-B_{s} \sim \mathcal{N}(0, t-s)$ $\left(\mathcal{N}\left(\mu, \sigma^{2}\right)\right.$ is a gaussian distribution with mean value μ and variance σ^{2}).
- B_{t} is scale invariant: given $\alpha>0, \alpha^{-1} B_{\alpha^{2} t}$ is still Brownian motion.
- Probability density function: $f_{B_{t}}(x)=\frac{1}{\sqrt{2 \pi t}} \exp \left(-\frac{x^{2}}{2 t}\right)$.
- B_{t} can be constructed as scaling limit of a random walk.

