Schramm-Loewner Equation and Connections with Statistical Mechanics

Pietro Rotondo

October 16th, 2012

Pietro Rotondo

Outline

- Phase transitions (spontaneous symmetry breaking, etc.).
- At the critical temperature: conformal invariance.
- New rigorous approach is given by Schramm-Loewner equation (SLE).

・ロト ・四ト ・ヨト ・ヨト

æ

Pietro Rotondo

Statistical Mechanics: Ising Model Interfaces

- Spins ± 1 on each site of a square lattice. Configuration $\sigma \in \{+1, -1\}^{\text{sites}}$.
- Energy: $\mathcal{H}[\sigma] = -\sum_{\langle i,j \rangle} \sigma_i \sigma_j$.
- Partition function: $Z_{\beta} = \sum_{\sigma} e^{-\beta \mathcal{H}[\sigma]}$, $(\beta = \frac{1}{T})$.

 $T < T_c$

 $T \sim T_c$

 $T > T_c$

Pietro Rotondo

Statistical Mechanics: Honeycomb Lattice Percolation

- Choose two boundary points *x*, *y* and fix boundary conditions.
- Colour the plaquettes in the bulk white or red, with the same probability.

Pietro Rotondo

Riemann Mapping Theorem

Theorem

 $U \subset \mathbb{C}$ simply connected open subset, then there exists a biholomorfic (bijective and holomorfic) mapping f from U onto the open unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$.

- Holomorfic means Conformal: the map f preserves the angles between curves.
- Any two open simply connected subsets of C, D and D', can be mapped conformally into each other.

Loewner Equation

- Let γ : [0,∞) → H
 (upper half complex plane) be a simple curve (no self intersections) with γ(0) = 0, γ(0,∞) ⊆ H and γ(t) → ∞ as t → ∞ (to avoid pathological curves, e.g. spirals).
- For each $t \ge 0$ let $\mathbb{H}_t := \mathbb{H} \setminus \gamma[0, t]$ be the slit half plane and let $g_t : \mathbb{H}_t \to \mathbb{H}$ be the corresponding Riemann map.
- It is always possible to choose a normalization for g_t and a parametrization for γ in such a way that as $z \to \infty$

$$g_t(z) = z + \frac{2t}{z} + O\left(\frac{1}{z^2}\right)$$

イロト 不得下 イヨト イヨト 二日

Pietro Rotondo

Loewner Equation

• The curve $\gamma: [0,\infty) \to \overline{\mathbb{H}}$ evolves from $\gamma(0)$ to $\gamma(t)$.

$$\blacksquare \mathbb{H}_t := \mathbb{H} \setminus \gamma[0, t], \ g_t : \mathbb{H}_t \to \mathbb{H}$$

- $U_t := g_t(\gamma(t))$, the image of the tip $\gamma(t)$ (driving function).
- Theorem: $U_t \subseteq \mathbb{R}$ for every $t \ge 0$ (Moreover U_t is continuous).

イロト 不得下 イヨト イヨト 二日

Pietro Rotondo

Loewner Equation

Theorem (Loewner 1923)

For fixed z, $g_t(z)$ is the solution of the ODE:

$$\frac{\partial g_t(z)}{\partial t} = \frac{2}{g_t(z) - U_t} , \qquad g_0(z) = z$$

Some examples for deterministic *U_t*:

$$U(t) = 0 \Rightarrow g(t) = \sqrt{z^2 + 4t} \Rightarrow \gamma(t) = 2i\sqrt{t}.$$

• $U(t) = \sqrt{kt}$, $\gamma(t)$ is a straight line at fixed angle with respect to the real axis.

Pietro Rotondo

Stochastic Loewner Equation (aka Schramm LE)

- Promote U_t to be a stochastic process.
- It is possible to define a probability measure on the curves taking values in **H**.
- Domain Markov Property (DMP): a curve doesn't make difference between its past and its boundary (roughly speaking).

Theorem (Schramm 2000)

If we require CI and DMP the only consistent stochastic process is a standard one dimensional Brownian motion: $U_t = \sqrt{kB_t}$.

The ensemble of curves generated with the variance parameter k is called SLE_k.

Pietro Rotondo

Numerical Investigations

Perform a backward integration from the initial condition: $g_t(\gamma_t) = U_t$, solving the finite difference equation:

$$g_t - g_{t-\Delta t} = \frac{2}{g_{t-\Delta t} - U_{t-\Delta t}}$$

 $SLE_{\frac{9}{2}}$

Pietro Rotondo

Exact Results: SLE Phases

Theorem (Schramm, Lawler, Werner 2004; Beffara 2008)

With Probability one:

- 0 < k ≤ 4, γ(t) is a random, simple curve (no double points) avoiding ℝ.</p>
- 4 < k < 8, \u03c7(t) is not simple, it has double points, but does not cross itself. These paths do hit R.

•
$$k \geq 8$$
, $\gamma(t)$ is also space filling.

With probability one, the Haussdorff dimension of SLE_k trace is:

$$\min\left\{1+\frac{k}{8},2\right\}$$

Pietro Rotondo

Exact Results: SLE, Scaling Limit and CFT

- SLE₆ is related to Critical percolation on the triangular lattice (Smirnov 2001).
- SLE₃ is the scaling limit of interfaces for the Ising model (Smirnov 2008).
- SLE₈/3 is conjectured to be the scaling limit for the self avoiding random walk (Lawler, Schramm, Werner 2004).
- When SLE_k corresponds to some CFT, the parameter k is related to the central charge c of the CFT by:

$$c = \frac{(8 - 3k)(k - 6)}{2k}$$
, (Bauer, Bernard 2002)

SLE is a new rigorous approach to study criticality in two dimensions.

- SLE is a stochastic equation \implies Path integral formulation.
 - Preliminary result: connection with a QM one-dimensional problem of a particle in an external potential V(x) ∝ ¹/_{x²}.
- Other non-trivial generalizations (q-deformed SLE, fractional derivatives).

(日) (同) (三) (三)

- $B_t \Rightarrow \mathbb{P}^{0,\infty}_{\mathbb{H}}(\gamma)$, probability measure of the curves on \mathbb{H} .
- By a Conformal transformation g_t^{-1} : $g_t^{-1}(\mathbb{H}) = \mathbb{H}_t$, $g_t^{-1}(0) = \gamma(t)$, $g_t^{-1}(\infty) = \infty$

• Then
$$\mathbb{P}^{0,\infty}_{\mathbb{H}} \Rightarrow \mathbb{P}^{\gamma(t),\infty}_{\mathbb{H}_t}$$

Given a curve $\gamma[0,\infty] = \gamma[0,t] \cdot \gamma[t,\infty]$, Domain Markov property is the statement:

$$\mathbb{P}^{0,\infty}_{\mathbb{H}}(\gamma|\gamma[0,t]) = \mathbb{P}^{\gamma(t),\infty}_{\mathbb{H}_t}(\gamma)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQの

Pietro Rotondo

Brownian motion (Wiener process)

• Characterization of the Brownian motion B_t :

- $\bullet B_0 = 0.$
- The function $t \rightarrow B_t$ is continuous with probability one.
- B_t has indipendent increments with $B_t B_s \sim \mathcal{N}(0, t s)$ $(\mathcal{N}(\mu, \sigma^2)$ is a gaussian distribution with mean value μ and variance σ^2).
- B_t is scale invariant: given $\alpha > 0$, $\alpha^{-1}B_{\alpha^2 t}$ is still Brownian motion.
- Probability density function: $f_{B_t}(x) = \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{x^2}{2t}\right)$.
- B_t can be constructed as scaling limit of a random walk.

イロト イポト イヨト

Pietro Rotondo