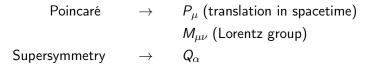
$\mathcal{N}=2$ supergravity in 4 dimensions


Camilla Santoli

17/11/2014

Symmetry between bosonic and fermionic fields.

Symmetry between bosonic and fermionic fields.

- unification of bosons (forces) and fermions (matter);
- better high energy behaviour;
- unification of gauge couplings preciser;
- provides candidates for cold dark matter.

$$egin{array}{rcl} {
m Poincare} & o & P_\mu \mbox{ (translation in spacetime)} \ & & M_{\mu
u} \mbox{ (Lorentz group)} \end{array}$$

- Q_{α} spinors, carry spin $\frac{1}{2}$, transform bosons \leftrightarrow fermions;
- \mathcal{N} supercharges Q_{α} ($\mathcal{N} = 2$)

$$egin{array}{rcl} {
m Poincare} & o & P_\mu \mbox{ (translation in spacetime)} \ & M_{\mu
u} \mbox{ (Lorentz group)} \end{array}$$

- Q_{α} spinors, carry spin $\frac{1}{2}$, transform bosons \leftrightarrow fermions;
- \mathcal{N} supercharges Q_{lpha} $(\mathcal{N}=2)$

superalgebra:[B,B] = B(usual Poincaré)[B,F] = F $[M,Q] \propto Q$ $\{F,F\} = B$ $\{Q,Q\} \propto P$

If ${\cal N}$ and λ (max value of the spin) are fixed, the field content of the theory is known.

Example: if $\mathcal{N} = 2$ and $\lambda = 2 \implies g_{\mu\nu}$ graviton with spin 2 $\Psi_{\mu\alpha}$ gravitino with spin $\frac{3}{2}$ A_{μ} vector field with spin 1

One multiplet including both fermions and bosons.

Supersymmetric version of pure general relativity

Supersymmetric version of pure general relativity

- ► supersymmetric ⇒ based on symmetry between bosons and fermions;
- based on general relativity;
- pure \Rightarrow no matter fields;

BUT

► can be coupled to matter fields ⇒ field theory describing both gravity and the other forces; Supersymmetry, promoted to local (gauge) symmetry, implies gravity.

a symmetry is local if it acts independently at each point of spacetime. Supersymmetry, promoted to local (gauge) symmetry, implies gravity.

a symmetry is local if it acts independently at each point of spacetime.

A gauge symmetry between bosons and fermions can only be implemented in field theory if spacetime is curved (gravity).

- ► all the reasons for supersymmetry;
- unification of gravity and other forces;
- better than general relativity as quantum theory at high energies;
- provides scalar candidates for inflatons;
- considered the low energy limit of string theory.

$\mathcal{N}=2$ supergravity: field content

Particles are organized in multiplets:

• supergravity multiplet \rightarrow

 $egin{array}{lll} g_{\mu
u} & {
m graviton} \ \Psi_{\mulpha} & 2 \ {
m gravitinos} \ A^0_\mu & {
m vector field} \end{array}$

Particles are organized in multiplets:

- $g_{\mu
 u}$ graviton • supergravity multiplet \rightarrow $\Psi_{\mu\alpha}$ 2 gravitinos A^0_{μ} vector field
- matter multiplets
 - $egin{array}{lll} A^{lpha}_{\mu} & n_V ext{ vector fields} \ z^{lpha} & n_V ext{ scalar fields} \ \chi^{ilpha} & n_V ext{ fermions, gauginos} \end{array}$ • n_V vector multiplets \rightarrow

 - n_H hypermultiplets $\rightarrow q^u = 4n_H$ scalar fields, hyperscalars ξ^A 2*n_H* fermions, hyperinos

▶ two supercharges *Q*;

- ► two supercharges *Q*;
- ► additional symmetry ⇒ the scalars z^α and q^u of the matter multiplets can be viewed as coordinates of peculiar manifolds;
- ► function F (prepotential) to determine all the relevant quantities in the bosonic Lagrangian;
- ▶ part of the additional symmetry can be gauged.

- $n_H = 0$, no hypermultiplets;
- $n_V = 3$, 3 vector multiplets;
- the 3 scalars z^{α} as coordinates of a manifold;
- specific choice of F, coming from quantum corrections to string theories;
- part of the additional symmetry is gauged.

- bosonic Lagrangian \Rightarrow classical solutions
 - configurations of the bosonic fields only which satisfy the equations of motion, when all the fermionic fields vanish.

- bosonic Lagrangian \Rightarrow classical solutions
 - configurations of the bosonic fields only which satisfy the equations of motion, when all the fermionic fields vanish.
- black hole solutions:
 - rich set of geometries;
 - electric and magnetic charges;
 - entropy.

$\mathcal{N}{=}2$ supergravity: some details

▶ _ from the function *F* and the gauging;

$$e^{-1}\mathcal{L}_{bos} = \frac{1}{16\pi G}R + \frac{1}{4}\mathcal{I}_{IJ}F_{\mu\nu}^{I}F^{J\mu\nu} - \frac{1}{8}\mathcal{R}_{IJ}e^{-1}\epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}^{I}F_{\rho\sigma}^{J} - g_{\alpha\overline{\beta}}\partial_{\mu}z^{\alpha}\partial^{\mu}\overline{z}^{\overline{\beta}} - V$$

$\mathcal{N}=2$ supergravity: some details

▶ _ from the function *F* and the gauging;

$$e^{-1}\mathcal{L}_{bos} = \frac{1}{16\pi G}R + \frac{1}{4}\mathcal{I}_{IJ}F_{\mu\nu}^{I}F^{J\mu\nu} - \frac{1}{8}\mathcal{R}_{IJ}e^{-1}\epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}^{I}F_{\rho\sigma}^{J} - g_{\alpha\overline{\beta}}\partial_{\mu}z^{\alpha}\partial^{\mu}\overline{z}^{\overline{\beta}} - V$$

Ansatz for the black hole metric;

$$ds^{2} = -e^{2U(r)}dt^{2} + e^{-2U(r)}\left(dr^{2} + e^{2\psi(r)}d\Omega^{2}\right)$$

$\mathcal{N}=2$ supergravity: some details

▶ _ from the function *F* and the gauging;

$$e^{-1}\mathcal{L}_{bos} = \frac{1}{16\pi G}R + \frac{1}{4}\mathcal{I}_{IJ}F_{\mu\nu}^{I}F^{J\mu\nu} - \frac{1}{8}\mathcal{R}_{IJ}e^{-1}\epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}^{I}F_{\rho\sigma}^{J} - g_{\alpha\overline{\beta}}\partial_{\mu}z^{\alpha}\partial^{\mu}\overline{z}^{\overline{\beta}} - \mathbf{V}$$

Ansatz for the black hole metric;

$$ds^{2} = -e^{2U(r)}dt^{2} + e^{-2U(r)}\left(dr^{2} + e^{2\psi(r)}d\Omega^{2}\right)$$

 equations of motion ⇒ system of differential equations in U, ψ, z^α, to be solved.

- symmetry is a powerful tool;
- introduction of supersymmetry and supergravity;
- many valuable properties;
- unification of gravity and other forces;
- wide range of theories \Rightarrow solutions still to be studied.