Giovanni Stagnitto

PhD Student in co-tutorship between Università degli Studi di Milano & INFN (Milano) – Advisor: S. Forte Université Paris Diderot & LPTHE (Paris) – Advisors: M. Cacciari, G. Soyez

Issues with the single jet inclusive cross section

Workshop First-Year students – 9th & 10th October 2018 – Milano

Preamble: the strong world of QCD

QCD = quantum chromodynamics

Quarks + **gluon** (the mediator of the strong force, from the Latin *gluten*) carry the color degree of symmetry (**R**, **G**, **B**)

At ordinary energies QCD <u>very strong</u> → confinement into hadrons (color-neutral)

Preamble: the less strong world of perturbative QCD

The big picture of an event

Why jets and not partons?

When talking about QCD in the final state, we can see only jets (confinement!) **Jets** as a proxy for partons \rightarrow study of QCD "blob" BUT a proper definition is needed

G. Stagnitto

An interlude on collider kinematics

$$(p_x, p_y, p_z) \to (p_t, y, \varphi)$$

- $p_t \hspace{0.2cm} \begin{array}{c} \textit{transverse momentum:} \\ \text{projection of momentum on} \\ \text{plane transverse to beam axis} \end{array}$
- y rapidity: related to angle formed with the beam axis

$$y = 0 \leftrightarrow \theta = 90$$
$$y = \pm \infty \leftrightarrow \theta = 0,180$$

azimuth angle: rotation around beam axis

9 Oct 2018 - Milano

G. Stagnitto

 φ

An example: anti-kt jet clustering algorithm

Distance between particle i and j:

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$$

where the angular distance is defined as:

$$R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

R is the *radius* of the jet

If the smallest is a d_{ij}, recombine i & j into p = p_i + p_j; if the smallest is d_{iB}, declare i as a final jet; and so on, until no particles are left

Cacciari, Salam, Soyez '08

"Cone" pattern with the soft radiation collected around hard towers

On the *experimental* definition of cross section

Number of expected event in time T $N_{\rm ev}(T)$ $= \overline{\int_T \mathcal{L}(t)}$ Cross section = "probability" of a particular process *Luminosity* = all the rest (collision frequency, bunch size, beam profile, ecc.)

9 Oct 2018 - Milano

On the *theory* definition of cross section

<u>Partonic</u> cross section for production n particles in the final state:

 $\sigma(2 \to n) = \frac{1}{\mathcal{F}} \int_{\Omega} |M_n|^2 \mathrm{d}\phi_n$ Flux = function of Amplitude squared = initial state obtained from calculation 2momenta of Feynman diagrams COUPLING Example: $e^+e^- \rightarrow q\overline{q}$ $|M_2|^2 = \mathcal{M}_{2,0} + \mathcal{M}_{2,1}\alpha_s + \dots$

Integration over the final state phase space of n partons

3

From partons to jets

A jet can contain more partons! e. g. a couple of partons close in angle (< R)

IRC safety

A parton $(2\rightarrow 2, 2\rightarrow 3, ecc.)$ cross section beyond LO is **infinite**!

BUT if jets are enough inclusive to allow the infinities to "sum up"...

Configuration when particles become SOFT or COLLINEAR $(+\infty)$ same number of jets as the virtual $(-\infty)$

INFRARED and **COLLINEAR** (IRC) SAFETY

Where do the infinities come from?

 $e^+e^- \rightarrow n$ partons with momenta $p_1, \ldots, p_n; n$ is a gluon

When the gluon becomes:

- **soft** i.e. energy $\rightarrow 0$
- **collinear** to another parton i.e. angle $\rightarrow 0$

$$\lim_{\theta_{in}\to 0, E_n\to 0} \mathrm{d}\Phi_n |M_n^2(p_1,\ldots,p_n)| =$$

$$d\Phi_{n-1}|M_{n-1}^2(p_1,\ldots,p_{n-1})|$$

"Single jet inclusive cross section"

For a given event: <u>all the jets</u>

<u>for each jet</u> we plot pt (y)

A well known observable, both from th. and exp. side. NLO: Ellis, Kunszt, Soper (1992);

Giele, Glover, Kosower (1994); Nagy (2002) NNLO: Currie, Glover, Pires (2017)

See e. g. ATLAS (CERN-EP/2017-157) or CMS (CERN-EP/2016-104)

Main feature of this observable

What is the problem?

LHC precision era → now th error > exp error! → accuracy of predictions necessary → next order corrections needed

Why *scale variation*? A "feeling" of theory uncertainty

Order increases → scale dependence decreases = towards a perturbative "stability"

BUT in the recent NNLO calculation this is not the case ...

The "non-unitarity" consequence: logs mismatch

"What's happening at the boundaries?" Example with k getting soft

$$\frac{\mathrm{d}\sigma_{3j}}{\mathrm{d}p_{t,J}} = \sum_{i=1}^{3} \int \mathrm{d}p_{t,i} \mathrm{d}p_{t,j} \mathrm{d}p_{t,k} \frac{\mathrm{d}\sigma_{3j}}{\mathrm{d}p_{t,i} \mathrm{d}p_{t,j} \mathrm{d}p_{t,k}} \delta(p_{t,J} - p_{t,i}) \supset \# \int_{p_{t,\mathrm{cut}}} \frac{\mathrm{d}p_{t,k}}{p_{t,k}} \int \mathrm{d}y_k \mathrm{d}\varphi_k \mathcal{I}_{Jjk} \int \mathrm{d}y_J \mathrm{d}\varphi_J \mathcal{M}_{\mathrm{LO}}(p_J, p_J)$$
$$\frac{\mathrm{d}\sigma_{2j}}{\mathrm{d}p_{t,J}} = \sum_{i=1}^{2} \int \mathrm{d}p_{t,i} \mathrm{d}p_{t,j} \frac{\mathrm{d}\sigma_{2j}}{\mathrm{d}p_{t,i} \mathrm{d}p_{t,j}} \delta(p_{t,J} - p_{t,i}) \supset \# \int_{p_{t,\mathrm{cut}}} \frac{\mathrm{d}p_{t,k}}{p_{t,k}} \int \mathrm{d}y_k \mathrm{d}\varphi_k \mathcal{I}_{Jjk} \int \mathrm{d}y_J \mathrm{d}\varphi_J \mathcal{M}_{\mathrm{LO}}(p_J, p_J)$$
virtual

"Count" how many IRC logs appear in the 2 jets xs and in the 3 jets xs Some of them will cancel, but other not

New ideas

PRELIMINARY If we change definition of the observable maybe the perturbative stability of the calculation can be improved...

9 Oct 2018 - Milano

G. Stagnitto

Some final technical details

What we did during this first year:

- analytic equation at NLO in the small R approximation when we can use the limits of the matrix element shown before (the full calculation is extremely difficult, can be done only numerically)

- we have tried different definitions in this approximated framework, by keeping results analytically when possible, otherwise doing integration numerically

- we have checked our predictions against a full numerical code, using for example NLOJet++ (Nagy 2001, 2003)

... result are going to appear very soon!

Thanks Milan, and see you very soon!

Backup slides

Partonic cross section

Order by order, we need to ask for the kinematical configuration of the final state partons which give the required number of jets.

The "non-unitarity" consequence: logs mismatch

Our idea in a nutshell:

$$\sigma_{2j} \supset \int_0^1 \frac{\mathrm{d}\theta^2}{\theta^2} \left(\Theta(\theta^2 < R^2) - 1\right) = -\int_{R^2}^1 \frac{\mathrm{d}\theta^2}{\theta^2} = -\log\left(\frac{1}{R^2}\right)$$
$$\sigma_{3j} \supset \int_0^1 \frac{\mathrm{d}\theta^2}{\theta^2} \Theta(\theta^2 > R^2) = +\int_{R^2}^1 \frac{\mathrm{d}\theta^2}{\theta^2} = +\log\left(\frac{1}{R^2}\right)$$

We need to "count" how many logs appear in the 2 jets cross section and in the 3 jets cross section and to combine them properly, in order for these logs to cancel (or at least to be attenuated by some coefficient)