## A step forward in studying Cosmic Microwave Background polarized signal: the LSPE/STRIP balloon experiment

October 16th 2012

Physics, Astrophysics and Applied Physics PhD School Workshop

Supervisor: Dott. Aniello Mennella

### Nicoletta Krachmalnicoff







UNIVERSITÀ DEGLI STUDI DI MILANO

## The Big Bang Theory

• First proposed by Georges Lemaître in 1927



- It predicts that the Universe starts to expand about **13.7 billion years ago** from singolarity
- At the beginning the Universe was in a Quark-Gluon plasma state extremely hot and dense ( $\rho \approx 10^{25} \text{ g/cm}^3$  and  $T \approx 10^{15} K @t \approx 10^{-8} s$ )
- 3 major experimental evidences:

### UNIVERSE EXPANSION

### ELEMENT ABUNDANCES IN THE UNIVERSE

### COSMIC MICROWAVE BACKGROUND

- ~ 3.8 x 10<sup>5</sup> years after the Big Bang the temperature of the universe was ~ 3000 K, low enough to permit the recombination between electrons and protons
- The **reduction of the Thomson scattering** cross section lets the photons free to propagate in the space

• Thanks to the expansion of the Universe those photons are visible today as a background radiation in the microwave range: the **Cosmic Microwave Background** 

- ~ 3.8 x 10<sup>5</sup> years after the Big Bang the temperature of the universe was ~ 3000 K, low enough to permit the recombination between electrons and protons
- The **reduction of the Thomson scattering** cross section lets the photons free to propagate in the space

• Thanks to the expansion of the Universe those photons are visible today as a background radiation in the microwave range: the **Cosmic Microwave Background** 

• The presence of a **uniform** and **isotropic** radiation in the Universe was first theorized by George Gamow in 1948 and experimentally observed by chance (!!!!!) in 1964 by Arno Penzias and Robert Wilson (Nobel Prize 1978)

• In 1989 the *COsmic Background Explorer* (COBE) has been the first space mission dedicated to CMB studies (Nobel Prize 2006 to John Mather and George Smoot)



• In 1989 the *COsmic Background Explorer* (COBE) has been the first space mission dedicated to CMB studies (Nobel Prize 2006 to John Mather and George Smoot)



• In 1989 the *COsmic Background Explorer* (COBE) has been the first space mission dedicated to CMB studies (Nobel Prize 2006 to John Mather and George Smoot)



- Temperature anisotropies  $\Delta T/T \simeq 10^{-5}$
- These anisotropies describe the composition of the primordial plasma and represent the seeds of structures visible today in our Universe



- Temperature anisotropies  $\Delta T/T \simeq 10^{-5}$
- These anisotropies describe the composition of the primordial plasma and represent the seeds of structures visible today in our Universe
- The POWER SPECTRUM describes the amplitude of anisotropies as a function of the angular scale
- Its shape critically depends on the value assumed by cosmological parameters



 $\propto 1/(angular scale)$ 

- Temperature anisotropies  $\Delta T/T \simeq 10^{-5}$
- These anisotropies describe the composition of the primordial plasma and represent the seeds of structures visible today in our Universe
- The POWER SPECTRUM describes the amplitude of anisotropies as a function of the angular scale
- Its shape critically depends on the value assumed by cosmological parameters

• Important to reconstruct the power spectrum up to high multipole (small angular scale) and to make **instrumental systematic effects as small as possible**!

- Temperature anisotropies  $\Delta T/T \simeq 10^{-5}$
- These anisotropies describe the composition of the primordial plasma and represent the seeds of structures visible today in our Universe
- The POWER SPECTRUM describes the amplitude of anisotropies as a function of the angular scale
- Its shape critically depends on the value assumed by cosmological parameters

• Important to reconstruct the power spectrum up to high multipole (small angular scale) and to make **instrumental systematic effects as small as possible**!

• The **Planck satellite** (ESA, 2009) cosmological data will give information about temperature anisotropies restricted only by foreground contaminations.

## **CMB** polarization

• The next generation of instruments will study the polarization characteristics of the CMB signal!!

 The radiation is polarized thanks to Thomson scattering events during the epoch of recombination

• To generate a net polarized signal a quadrupole anisotropy in the primordial plasma is needed



## **CMB** polarization

• The next generation of instruments will study the polarization characteristics of the CMB signal!!

 The radiation is polarized thanks to Thomson scattering events during the epoch of recombination

• To generate a net polarized signal a quadrupole anisotropy in the primordial plasma is needed



- This kind of anisotropy could have been created in different ways:
- **1)** density fluctuation in the plasma (scalar perturbation)
- **2)** vorticity in the plasma (vector perturbation)
- **3)** gravitational waves that stretch and squeeze space (tensor perturbation)

### **CMB** polarization



• The polarization pattern in the sky can be decomposed into 2 components:

Curl-free component, called "E-mode": principally generated by density fluctuation
Grad-free component, called "B-mode": principally generated by gravitational waves

## Why studying CMB polarization?

- CMB E-modes have been observed by several instrument
- CMB B-modes have never been observed, we only have put upper limit on their intensity
- The observation of B-modes is one of the hottest topic in observational cosmology principally because:

# 1) IT BREAKS THE DEGENERACY OF THE TEMPERATURE POWER SPECTRUM

2) IT GIVES INFORMATION ABOUT THE EPOCH OF REIONIZATION

## 3) IT proves the inflation theory 3

### Why studying CMB polarization?

• CMB E-modes have been observed by several instrument



The CMB signal is extremely faint and weakly polarized! (~10%)

The polarization pattern in the sky can be decomposed in 2 modes

E modes are generated by density fluctuation B modes are generated by gravitational waves

**B** modes have never been experimentally observed

**Observation of B modes would eventually prove the** Inflation theory!

### **Observing CMB polarization**

- We want to observe an extremely weak signal (  $\lesssim 1\,\mu K$  )
- We need to build up **extremely sensitive instruments**

![](_page_17_Figure_3.jpeg)

### **Observing CMB polarization**

- We want to observe an extremely weak signal (  $\lesssim 1 \, \mu K$  )
- We need to build up **extremely sensitive instruments**

![](_page_18_Figure_3.jpeg)

• We also need to pay particular attention to the instrumental systematic effects!!

### **The Large Scale Polarization Explorer**

• Two instrument on board of a stratospheric balloon:

**SWIPE** (*Short Wavelength Instrument for the Polarization Explorer*): array of bolometers at 95, 145 and 245 GHz

**STRIP** (*STRatospheric Italian Polarimeter*) : polarimeters array at 43 and 90 GHz

• 15 days flight around North Pole during arctic night (2014/2015)

![](_page_19_Figure_5.jpeg)

### **The Large Scale Polarization Explorer**

• Two instrument on board of a stratospheric balloon:

**SWIPE** (*Short Wavelength Instrument for the Polarization Explorer*): array of bolometers at 95, 145 and 245 GHz

**STRIP** (*STRatospheric Italian Polarimeter*) : polarimeters array at 43 and 90 GHz

• 15 days flight around North Pole during arctic night (2014/2015)

### Sensitivity improvement factor w.r.t. Planck

| STRIP 43 GHz | STRIP 90 GHz | SWIPE 95 GHz | SWIPE 145 GHz | SWIPE 245 GHz |
|--------------|--------------|--------------|---------------|---------------|
| 2.2          | 0.6          | 2.7          | 3.2           | 4.9           |

### The STRIP instrument

- 49 detectors observing the sky @ 43 GHz + 7 detectors @ 90 GHz
- Each detector is made up of a corrugated feed horn+OMT+polarimeter
- Each detector can measure simultaneously stokes U and Q parameters
- The instrument is coupled with a Dragonian dual reflector telescope (aperture ~60 cm)

![](_page_21_Picture_5.jpeg)

Understand the possible sources of systematic effects and their impact on scientific data

Build up a pipeline that simulates the functioning of the STRIP polarimeters including a modeling of the systematic effects.

Implement the best strategy to keep systematic effects under control (hardware configuration, calibration strategy, algorithm to remove residual effects, ....)

![](_page_23_Figure_1.jpeg)

![](_page_24_Figure_1.jpeg)

Simulates how the instrument observes the sky:

- mission information
- scanning strategy
- focal plane geometry
- convolution with the beam

![](_page_25_Figure_1.jpeg)

![](_page_26_Figure_1.jpeg)

### First (very preliminary) results

![](_page_27_Figure_1.jpeg)

### First (very preliminary) results

![](_page_28_Figure_1.jpeg)

### **First (very preliminary) results**

![](_page_29_Figure_1.jpeg)

![](_page_30_Figure_0.jpeg)