

Isospin mixing in N=Z nuclei

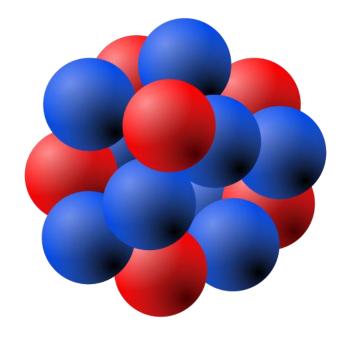
Simone Ceruti Università degli Studi di Milano

```
The Isospin Symmetry
➢Isospin Mixing
              E^* = 0
              E^* > 0
Experimental techniques
Our work
```

Beyond the nuclear structure

Conclusions

The nuclear interaction is **charge independent**


- Neutrons (n) and protons (p) are different states of the same particle, the Nucleon (N)
- ➢To describe this symmetry Heisemberg introduced a new quantum number, the Isospin (Isobaric spin) I.

The nuclear interaction is **charge independent**

- Neutrons (n) and protons (p) are different states of the same particle, the Nucleon (N)
- ➤To describe this symmetry Heisemberg introduced a new quantum number, the Isospin (Isobaric spin) I.

$$I = 1/2$$
 N $I_z = +1/2$
n $I_z = -1/2$

For a generic nucleus:

$$I_z = (N - Z)/2$$
$$I_z \le I \le |I_z|$$

The nuclear ground state corresponds to the minimum value of isospin $I = I_z$

- ➤The presence of the Coulomb interaction inside the nucleus causes a mixing between states with different isospin
- The main contribution to the mixing is between states with $\Delta I = 1$
- ➢In a perturbative way the mixing probability in the nuclear ground state is defined as:

$$\alpha^{2} = \frac{|\langle I = 1 | H_{c} | I = 0 \rangle|^{2}}{\Delta E^{2}}$$

NO MIXING

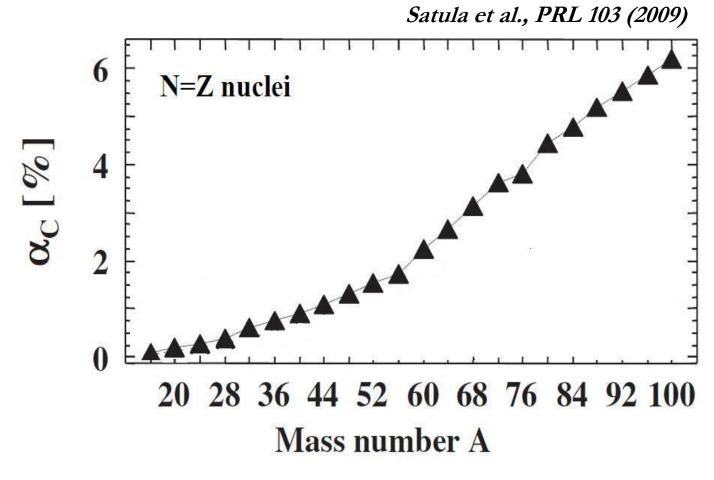
$$|A\rangle = |0\rangle$$

mixing $|A\rangle = \beta |0\rangle + \alpha |1\rangle$ $\alpha^2 + \beta^2 = 1$

NO MIXING

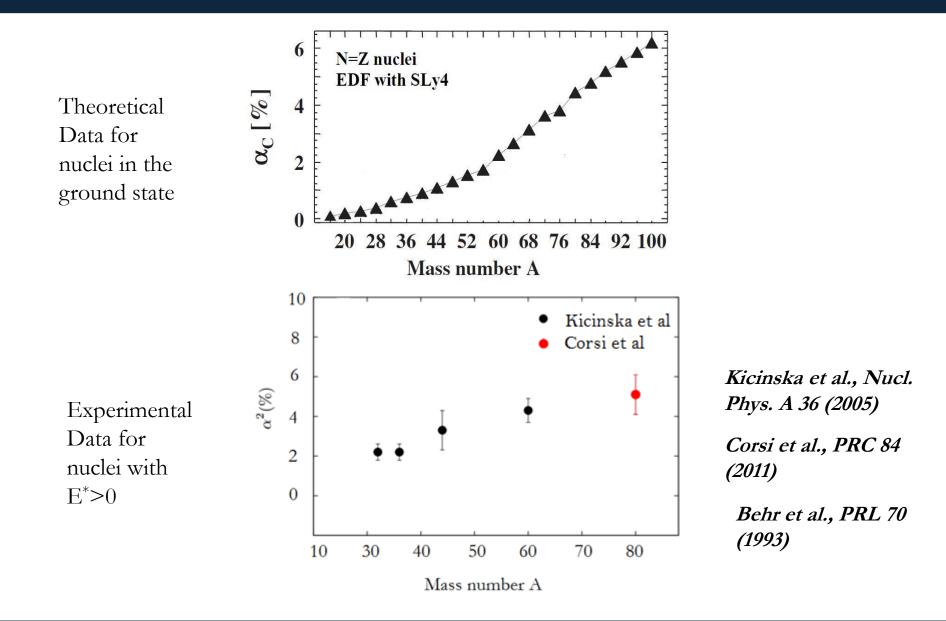
$$|A\rangle = |0\rangle$$

MIXING


$$|A\rangle = \beta |0\rangle + \alpha |1\rangle$$

$$\alpha^{2} + \beta^{2} = 1$$

How much is it?
α² vs Z ?
α² vs E* ?
How can we measure it?


1

The Isospin Mixing in the ground state

The mixing increases due to the increase of the Coulomb potential with Z

The Isospin Mixing in the ground state

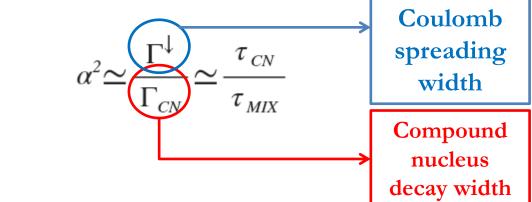
We can describe the nucleus at high excitation energy in a thermodynamical way and we can define the *nuclear temperature* as:

$$T = \sqrt{\frac{E_{int}}{a}}$$

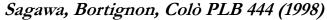
Isospin mixing depends also on the nuclear temperature

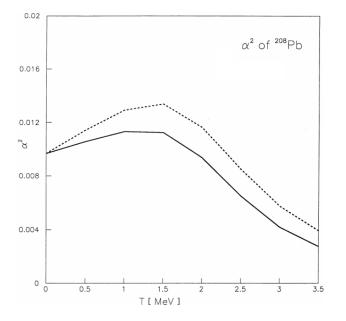
> A nucleus in a excited state has a finite lifetime τ

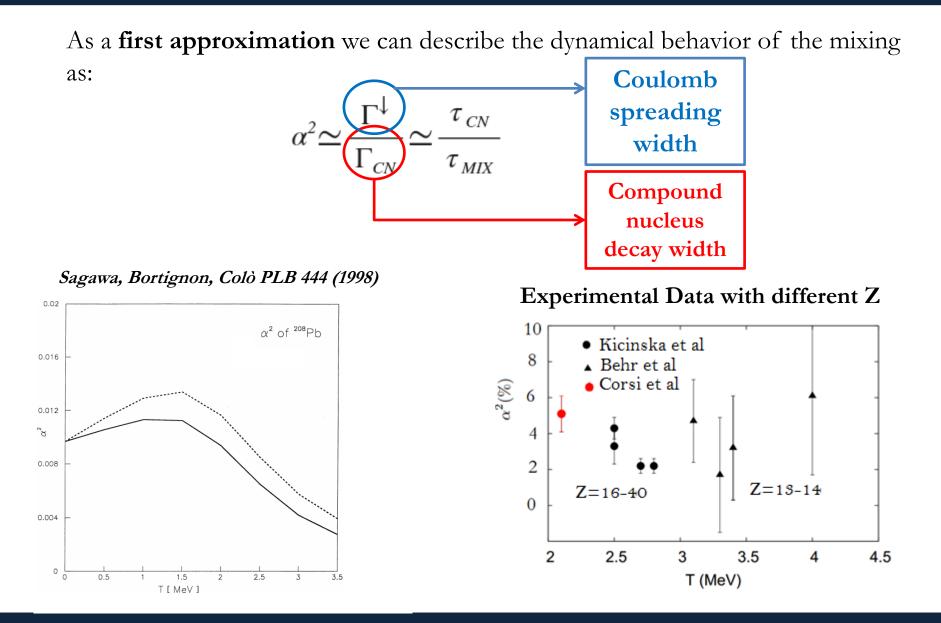
- The lifetime can be so short to not allow a complete mixing
- ➤At high excitation energy (E*) the isospin symmetry is restored


➤We have a dynamical behavior of the isospin mixing phenomenon

As a **first approximation** we can describe the dynamical behavior of the mixing as:


$$\alpha^2 \simeq \frac{\Gamma^{\downarrow}}{\Gamma_{CN}} \simeq \frac{\tau_{CN}}{\tau_{MIX}}$$


as:


As a **first approximation** we can describe the dynamical behavior of the mixing

As a **first approximation** we can describe the dynamical behavior of the mixing as: Coulomb spreading $\tau_{\rm CN}$ width au_{MIX} Compound nucleus decay width

Experimental techniques

T=0

- Study of Fermi β transitions ($\Delta J=0, \Delta I=0, \pi_i \pi_f=+$)
- Measurement of the β-particles anisotropy emission
- Possible for all nuclei
- Difficult for very unstable nuclei
- Study of a **forbidden** E1 decay
- Measurement of the strength of the E1 gamma-decay
- Possible only in N=Z nuclei
- Difficult for very unstable nuclei

Saverijns at al., PRC 71 (2005) Farnea et al., PLB 551 (2003)

T> 0

- Study of a **forbidden** E1 decay
- Measurement of the strength of the E1 gamma decay of the Giant
 Dipole Resonance (GDR)
- Possible only in N=Z nuclei
- It's easier to produce a N=Z nucleus at T>0
- Possible to reach very unstable nuclei with heavy ions fusion

Harakeh et al., PLB 176 (1986) Behr at al., PRL 70 (1993)

Experimental techniques

T=0

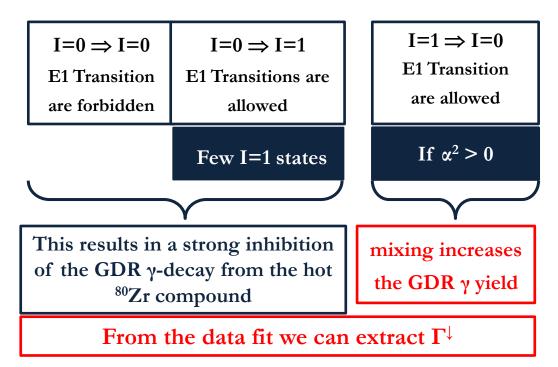
- Study of Fermi β transitions ($\Delta J=0, \Delta I=0, \pi_i \pi_f=+$)
- Measurement of the β-particles anisotropy emission
- Possible for all nuclei
- Difficult for very unstable nuclei
- Study of a **forbidden** E1 decay
- Measurement of the strength of the E1 gamma-decay
- Possible only in N=Z nuclei
- Difficult for very unstable nuclei

Saverijns at al., PRC 71 (2005) Farnea et al., PLB 551 (2003)

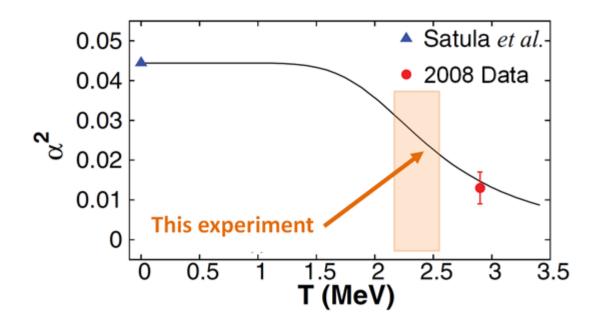
T> 0

- Study of a **forbidden** E1 decay
- Measurement of the strength of the E1 gamma decay of the Giant
 Dipole Resonance (GDR)
- Possible only in N=Z nuclei
- It's easier to produce a N=Z nucleus at T>0
- Possible to reach very unstable nuclei with heavy ions fusion

Our work in ⁸⁰Zr


Harakeh et al., PLB 176 (1986) Behr at al., PRL 70 (1993)

Our work


We form a I=0 Compound Nucleus with a heavy ion fusion reaction

 ${}^{40}Ca + {}^{40}Ca \Longrightarrow {}^{80}Zr^*$

We measure the γ-rays yield from the E1 decay of the GDR built on the CN (first step)

Our work

- With two or more experimental points on the same nuclear system we can extract the isospin mixing at T=0.
- For ⁸⁰Zr we have only a theoretical value at T=0.
- With this technique we can extract the value of isospin mixing at T=0 for N=Z unstable nuclei (vary short lifetime)

The isospin mixing is a phenomenon known for a long time as it enter in beta decay,

BUT there are few data available for testing the models

> There isn't a systematical experimental study

Experimental techniques are very complicated

We aim to extract the value of the T = 0 isospin mixing from data on nuclei at T>0

This is a nuclear structure problem but

In the Standard Model (SM) the Cabibbo-Kobayashi-Maskawa matrix (CKM) is a unitary matrix. Its elements satisfy:

$$V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 1$$

 \blacktriangleright Usually the V_{ud} element is derived from superallowed nuclear β -decay measuring the *ft* value:

$$ft \longrightarrow G_v \longmapsto V_{ud}$$

- > ft value is affected to isospin mixing
- \blacktriangleright We have to correct the data in order to extract a value of G_V nucleus independent

$$ft \implies Ft \implies G_v \implies V_{ud}$$

$$Ft \equiv ft(1+\delta_R)(1-\delta_C)$$

$$\delta_C = 4(I+1)\frac{V_1}{41\xi A^{2/3}}\alpha^2$$

In the Standard Model (SM) the Cabibbo-Kobayashi-Maskawa matrix (CKM) is a unitary matrix. Its elements satisfy:

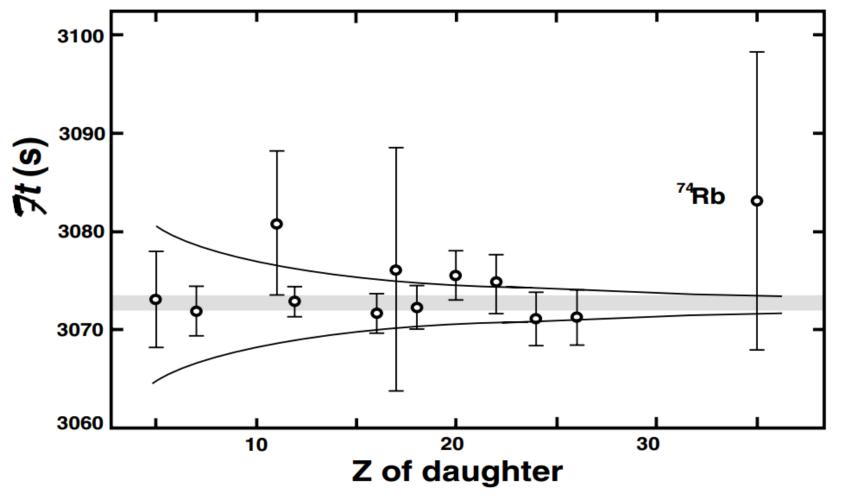
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$
 How can I test it?

Solution Usually the V_{ud} element is derived from superallowed nuclear β-decay measuring the *ft* value:

$$ft \longrightarrow G_v \longmapsto V_{ud}$$

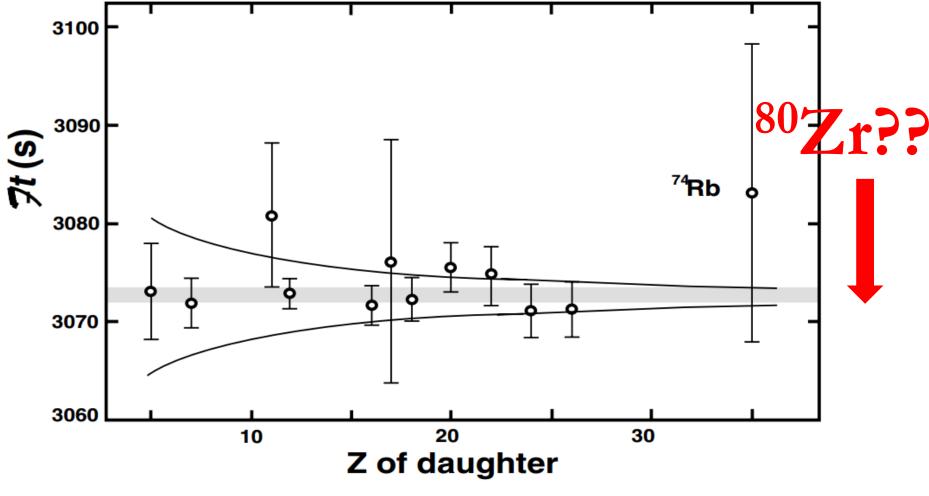
- > ft value is affected to isospin mixing
- \blacktriangleright We have to correct the data in order to extract a value of G_V nucleus independent

$$ft \implies Ft \implies G_{v} \implies V_{ud}$$


$$Ft \equiv ft(1+\delta_{R})(1-\delta_{C})$$

$$\delta_{C} = 4(I+1)\frac{V_{1}}{41\xi A^{2/3}}\alpha^{2}$$

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 0.9966 \pm 0.0014$$


Hardy, PRL 94 (2005)

Beyond the nuclear structure

Hardy, PRL 94 (2005) Kellerbauer, PRL 93 (2004)

Beyond the nuclear structure

Hardy, PRL 94 (2005) Kellerbauer, PRL 93 (2004)

Thank you for your attention

Isospin mixing

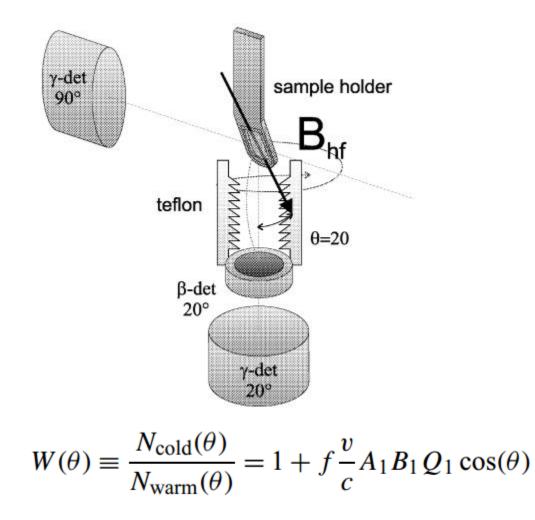
$$Q = \frac{e}{2}(1 - \tau_3) \qquad V_C = \sum_{i>j} \frac{1}{4}(1 - \tau_3^{(i)})(1 - \tau_3^{(j)})\frac{e^2}{r_{ij}}$$

$$V_{C}^{(0)} = \sum_{i>j} \frac{1}{4} \frac{e^{2}}{r_{ij}} \left(1 + \frac{1}{3} \vec{\tau}_{(i)} \cdot \vec{\tau}_{(j)} \right)$$
$$V_{C}^{(1)} = -\sum_{i>j} \frac{1}{4} \frac{e^{2}}{r_{ij}} (\tau_{3}^{(i)} + \tau_{3}^{(j)})$$
$$V_{C}^{(2)} = \sum_{i>j} \frac{1}{4} \frac{e^{2}}{r_{ij}} \left(\tau_{3}^{(i)} \tau_{3}^{(j)} - \frac{1}{3} \vec{\tau}_{(i)} \cdot \vec{\tau}_{(j)} \right)$$

In a superallowed
$$\beta$$
-decay $(0^+ \rightarrow 0^+)$

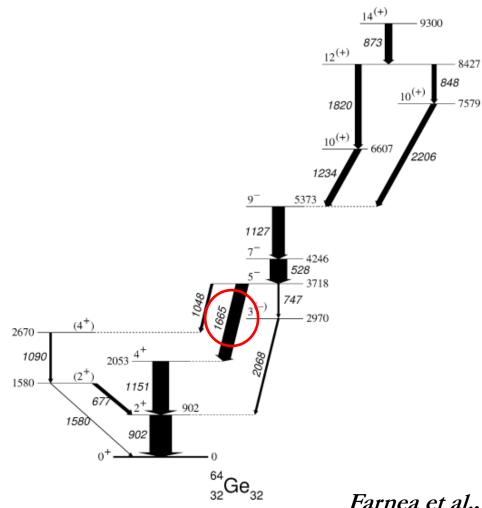
$$ft = \frac{K}{|M_V|^2 G_V^2}$$

$$|V_{ud}|^2 = \frac{G_V^2}{G_F^2}$$

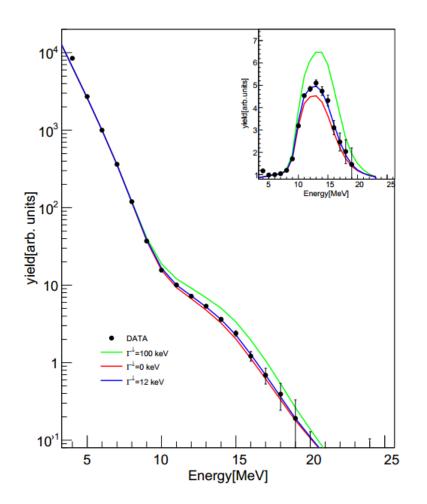

Experimental technique

$$ft = \frac{2(G_V)^2 \mathcal{F} t^{0^+ \to 0^+}}{(G_A M_{GT})^2}$$

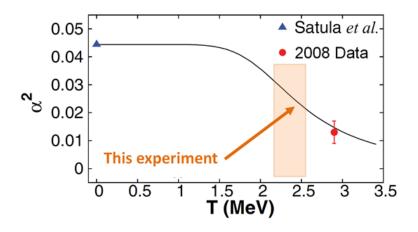
$$\alpha^2 = \frac{y^2}{(1+y^2)(1+T_0)} \frac{\mathcal{F} t^{0^+ \to 0^+}}{ft}$$


Saverijns at al., PRC 71 (2005)

Experimental technique


Schuurmans et al., Nuclera Physics A 672 (2000)

Experimental technique


Farnea et al., PLB 551 (2003)

Our work

Fit of gamma-decay spectrum of ⁸⁰Zr varying the value of the Coulomb Spreading Width

Our work

 $\Gamma_{IAS}^{\downarrow}$ is the coulomb spreading width of the Isobaric Analog State. **FROM DATA**

$$(\alpha^{I_0+1})^2 = \frac{1}{I_0+1} \frac{\tilde{\Gamma}_{IAS}^{\downarrow}(E^*)}{\tilde{\Gamma}_C(E^*) + \Gamma_M(E^*)}$$

- $\succ \Gamma_{M}$ is the width of the monopole resonance at the energy of the IAS **PARAMETER**
- From CN DECAY
 FROM CN DECAY

Corsi et al., PRC 84 (2011) Sagawa, Bortignon, Colò PLB 444 (1998)