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quantum chromodynamics

• Theory describing the Strong Force.

• Binds together atomic nuclei.
• Binds proton and neutrons (hadrons) together.

• Essential in the Large Hadron Collider Physics.
• Quantum field theory formally specified by the QCD Lagrangian
in terms of fundamental fields (particles):

• Quarks
• Gluons

• But equations cannot be solved exactly.
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running of αs

• The strength of the interaction is given by the coupling constant
αS.

• Analogous to the charge of the electron.

• Not really a constant! Value depends on the energy scale of the
interaction:

• The higher the energy the weaker the coupling constant:

• αS(MHiggs ≈ 125Mproton) ≈ 0.1
• αS(200MeV ≈ 0.2Mproton) ≫ 1

• In the high energy limit, we can expand the equations in powers
αS (perturbative QCD).

• Can determine the leading behavior of quarks and gluons in this
limit.

• In the low energy limit QCD exhibits non-perturbative effects.
• Quark confinment
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introducing pdfs

• High energy hadron collisions depend on both perturbative and
non-perturbative effects.

• Fundamental parton interactions are perturbative
• Hadron structure is non-perturbative.

• Parton Distribution Functions (PDFs) relate the high energy
parton interaction to the hadron structure.
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more on pdfs

To first order in αS PDFs are probability densities

Probability of sampling a given parton (quark u, quark d,
gluon...) with a given momentum p⃗parton.

• At higher orders affected by quantum corrections (see next talk by
Claudio Muselli).
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neural networks pdfs
.



determining pdfs

Since they are non-perturbative, PDFs cannot be calculated from
theory.

• We use experimental data to determine them.

• Usually, very indirect constrains

• We don’t have strong reasons to assume any particular
functional form for the PDFs.
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the nnpdf collaboration

• We provide a PDF determination based on Neural Networks.
• We strive to obtain a statistically consistent and unbiased
result incorporating all relevant experimental data.
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neural network

• General class of function constructed from iterarive composition
of simple functions.

• At each node we apply a function to a linear combination of
inputs.

• The coefficients of each combination are the parameters
(37× 7 PDFs = 259 for NNPDF).
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neural net formula
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fitting procedure

• Universal representation theorem guarantees that some NN can
approximate any continuous function.

• Also successfully used in Machine Learning.

• Use a genetic algorithm to fit parameters.
• Cross validation is used to avoid overlearning (i.e fitting
experimental noise).

• We repeat the procedure many times to obtain a Monte Carlo
Ensemble of functions representing uncertainty.

13



fitting procedure

• Universal representation theorem guarantees that some NN can
approximate any continuous function.

• Also successfully used in Machine Learning.

• Use a genetic algorithm to fit parameters.

• Cross validation is used to avoid overlearning (i.e fitting
experimental noise).

• We repeat the procedure many times to obtain a Monte Carlo
Ensemble of functions representing uncertainty.

13



fitting procedure

• Universal representation theorem guarantees that some NN can
approximate any continuous function.

• Also successfully used in Machine Learning.

• Use a genetic algorithm to fit parameters.
• Cross validation is used to avoid overlearning (i.e fitting
experimental noise).

• We repeat the procedure many times to obtain a Monte Carlo
Ensemble of functions representing uncertainty.

13



fitting procedure

• Universal representation theorem guarantees that some NN can
approximate any continuous function.

• Also successfully used in Machine Learning.

• Use a genetic algorithm to fit parameters.
• Cross validation is used to avoid overlearning (i.e fitting
experimental noise).

• We repeat the procedure many times to obtain a Monte Carlo
Ensemble of functions representing uncertainty.

13



closure tests

Assume we know the underlying function

14



closure tests

Generate fake data
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closure tests

Apply our fitting procedure
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closure tests

Verify statistical consistency
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representation of pdf uncer-
tainties
.



hessian representation

• PDF calculations enter in most High Energy Physics predictions.
• The computation of PDF uncertainties should be practical.

• A Monte Carlo ensemble (as NNPDF provides) has disadvantages:

• Many computations needed to reach precise results.
• Does not interoperate easily with experimental frameworks based
on continuous parameter variations.

• A Hessian (Multigaussian) representation is advantageous
(trough less general and precise)

16



hessian representation

• PDF calculations enter in most High Energy Physics predictions.
• The computation of PDF uncertainties should be practical.

• A Monte Carlo ensemble (as NNPDF provides) has disadvantages:

• Many computations needed to reach precise results.
• Does not interoperate easily with experimental frameworks based
on continuous parameter variations.

• A Hessian (Multigaussian) representation is advantageous
(trough less general and precise)

16



hessian representation

• PDF calculations enter in most High Energy Physics predictions.
• The computation of PDF uncertainties should be practical.

• A Monte Carlo ensemble (as NNPDF provides) has disadvantages:
• Many computations needed to reach precise results.

• Does not interoperate easily with experimental frameworks based
on continuous parameter variations.

• A Hessian (Multigaussian) representation is advantageous
(trough less general and precise)

16



hessian representation

• PDF calculations enter in most High Energy Physics predictions.
• The computation of PDF uncertainties should be practical.

• A Monte Carlo ensemble (as NNPDF provides) has disadvantages:
• Many computations needed to reach precise results.
• Does not interoperate easily with experimental frameworks based
on continuous parameter variations.

• A Hessian (Multigaussian) representation is advantageous
(trough less general and precise)

16



hessian representation

• PDF calculations enter in most High Energy Physics predictions.
• The computation of PDF uncertainties should be practical.

• A Monte Carlo ensemble (as NNPDF provides) has disadvantages:
• Many computations needed to reach precise results.
• Does not interoperate easily with experimental frameworks based
on continuous parameter variations.

• A Hessian (Multigaussian) representation is advantageous
(trough less general and precise)

16



mc2hessian

• We derived a method, mc2hessian, for converting from Monte
Carlo to Hessian representation (arxiv:1505.06736,
doi:10.1140/epjc/s10052-015-3590-7) .

• Significative reduction in the number of computations needed
(about a factor 10).

• Derive a more advanced iterative procedure to further improve
computations for specific processes, giving another factor 10
(following soon).

17

http://arxiv.org/abs/1505.06736
http://link.springer.com/article/10.1140%2Fepjc%2Fs10052-015-3590-7
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pdf4lhc recommendation

The main achievement of so far has been the work contributing to
the PDF4LHC recommendation (arxiv:PDF4LHC).

• Official CERN document, to have a high impact for both theorist
and experimentalists.

• Practical guidelines for usage of PDFs.
• Based on a combination of PDF determinations from different
groups.

• mc2hessian is used as a combination method.

19



pdf4lhc recommendation

The main achievement of so far has been the work contributing to
the PDF4LHC recommendation (arxiv:PDF4LHC).

• Official CERN document, to have a high impact for both theorist
and experimentalists.

• Practical guidelines for usage of PDFs.
• Based on a combination of PDF determinations from different
groups.

• mc2hessian is used as a combination method.

19



pdf4lhc recommendation

The main achievement of so far has been the work contributing to
the PDF4LHC recommendation (arxiv:PDF4LHC).

• Official CERN document, to have a high impact for both theorist
and experimentalists.

• Practical guidelines for usage of PDFs.
• Based on a combination of PDF determinations from different
groups.

• mc2hessian is used as a combination method.

19



pdf4lhc recommendation

The main achievement of so far has been the work contributing to
the PDF4LHC recommendation (arxiv:PDF4LHC).

• Official CERN document, to have a high impact for both theorist
and experimentalists.

• Practical guidelines for usage of PDFs.
• Based on a combination of PDF determinations from different
groups.

• mc2hessian is used as a combination method.

19



Thank you!
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