IMPROVING THE UNDERSTANDING AND EFFICIENCY OF PDF COMPUTATIONS

FIRST YEAR PHD WORKSHOP

Zahari Kassabov October 13th 2015

Dipartamento di Fisica, Università degli Studi di Milano

Parton Distribution Functions from Quantum Chromodynamycs

Neural Networks PDFs

Representation of PDF uncertainties

PARTON DISTRIBUTION FUNCTIONS FROM QUANTUM CHROMODYNAMYCS

• Theory describing the Strong Force.

- Theory describing the Strong Force.
 - Binds together atomic nuclei.

- Theory describing the Strong Force.
 - Binds together atomic nuclei.
 - Binds proton and neutrons (hadrons) together.

- Theory describing the Strong Force.
 - Binds together atomic nuclei.
 - Binds proton and neutrons (hadrons) together.
- Essential in the Large Hadron Collider Physics.

- Theory describing the Strong Force.
 - Binds together atomic nuclei.
 - Binds proton and neutrons (hadrons) together.
- Essential in the Large Hadron Collider Physics.
- Quantum field theory formally specified by the *QCD Lagrangian* in terms of fundamental *fields* (particles):
 - Quarks
 - Gluons

- Theory describing the Strong Force.
 - Binds together atomic nuclei.
 - Binds proton and neutrons (hadrons) together.
- Essential in the Large Hadron Collider Physics.
- Quantum field theory formally specified by the *QCD Lagrangian* in terms of fundamental *fields* (particles):
 - Quarks
 - Gluons
- But equations cannot be solved exactly.

- The strength of the interaction is given by the coupling constant $\alpha_{\rm S}$.
 - Analogous to the charge of the electron.

- The strength of the interaction is given by the coupling constant $\alpha_{\text{S}}.$
 - Analogous to the charge of the electron.
- Not really a constant! Value depends on the energy scale of the interaction:
 - The higher the energy the weaker the coupling constant:

- The strength of the interaction is given by the coupling constant $\alpha_{\text{S}}.$
 - Analogous to the charge of the electron.
- Not really a constant! Value depends on the energy scale of the interaction:
 - \cdot The higher the energy the weaker the coupling constant:
 - $\cdot \alpha_{\rm S}(M_{\rm Higgs} \approx 125 M_{\rm proton}) \approx 0.1$

- The strength of the interaction is given by the *coupling constant* α_{ς} .
 - · Analogous to the charge of the electron.
- Not really a constant! Value depends on the energy scale of the interaction:
 - The higher the energy the weaker the coupling constant:
 - $\alpha_{s}(M_{\text{Higgs}} \approx 125M_{\text{proton}}) \approx 0.1$ $\alpha_{s}(200MeV \approx 0.2M_{\text{proton}}) \gg 1$

- The strength of the interaction is given by the coupling constant $\alpha_{\text{S}}.$
 - Analogous to the charge of the electron.
- Not really a constant! Value depends on the energy scale of the interaction:
 - \cdot The higher the energy the weaker the coupling constant:
 - $\alpha_{\rm S}(M_{\rm Higgs} \approx 125 M_{\rm proton}) \approx 0.1$
 - $\alpha_{\rm S}(200 \text{MeV} \approx 0.2 M_{\rm proton}) \gg 1$
- In the high energy limit, we can expand the equations in powers $\alpha_{\rm S}$ (*perturbative QCD*).
 - Can determine the leading behavior of quarks and gluons in this limit.

- The strength of the interaction is given by the *coupling constant* α_{ς} .
 - · Analogous to the charge of the electron.
- Not really a constant! Value depends on the energy scale of the interaction:
 - The higher the energy the weaker the coupling constant:
 - $\alpha_{s}(M_{\text{Higgs}} \approx 125M_{\text{proton}}) \approx 0.1$ $\alpha_{s}(200MeV \approx 0.2M_{\text{proton}}) \gg 1$
- In the high energy limit, we can expand the equations in powers $\alpha_{\rm S}$ (perturbative QCD).
 - · Can determine the leading behavior of guarks and gluons in this limit
- In the low energy limit QCD exhibits *non-perturbative* effects.
 - Ouark confinment

INTRODUCING PDFS

- High energy hadron collisions depend on both perturbative and non-perturbative effects.
 - Fundamental *parton interactions* are perturbative
 - Hadron structure is non-perturbative.

INTRODUCING PDFS

- High energy hadron collisions depend on both perturbative and non-perturbative effects.
 - Fundamental parton interactions are perturbative
 - Hadron structure is non-perturbative.

INTRODUCING PDFS

- High energy hadron collisions depend on both perturbative and non-perturbative effects.
 - Fundamental parton interactions are perturbative
 - Hadron structure is non-perturbative.

• Parton Distribution Functions (PDFs) relate the high energy parton interaction to the hadron structure.

MORE ON PDFS

To first order in $\alpha_{\rm S}$ PDFs are probability densities

Probability of sampling a given parton (quark u, quark d, gluon...) with a given momentum \vec{p}_{parton} .

MORE ON PDFS

To first order in $\alpha_{\rm S}$ PDFs are probability densities

Probability of sampling a given parton (quark u, quark d, gluon...) with a given momentum \vec{p}_{parton} .

• At higher orders affected by quantum corrections (see next talk by Claudio Muselli).

NEURAL NETWORKS PDFS

• We use experimental data to determine them.

- \cdot We use experimental data to determine them.
 - Usually, very indirect constrains

$$\sigma_{pp \to X} = \int \sum_{ij}^{\text{partons}} f_i(p_1) f_j(p_2) \qquad \hat{\sigma}_{ij \to X} dp_1 dp_2$$

F

- \cdot We use experimental data to determine them.
 - Usually, very indirect constrains

Experimental data

$$\overbrace{\sigma_{pp \to X}}^{\text{partons}} = \int \sum_{ij}^{\text{partons}} f_i(p_1) f_j(p_2) \qquad \hat{\sigma}_{ij \to X} dp_1 dp_2$$

- \cdot We use experimental data to determine them.
 - Usually, very indirect constrains

$$\sigma_{pp \to X} = \int \sum_{ij}^{\text{partons}} f_i(p_1) f_j(p_2) \qquad \stackrel{\text{Theory}}{\widehat{\sigma}_{ij \to X}} dp_1 dp_2$$

- \cdot We use experimental data to determine them.
 - Usually, very indirect constrains

$$\sigma_{pp \to X} = \int \sum_{ij}^{\text{partons PDFs to determine}} \widehat{f_i(p_1)f_j(p_2)} \quad \widehat{\sigma}_{ij \to X} \ dp_1 dp_2$$

- \cdot We use experimental data to determine them.
 - Usually, very indirect constrains

$$\sigma_{pp \to X} = \int \sum_{ij}^{\text{partons PDFs to determine}} \widehat{f_i(p_1)f_j(p_2)} \quad \widehat{\sigma}_{ij \to X} \ dp_1 dp_2$$

• We don't have strong reasons to assume any particular functional form for the PDFs.

NNPDF

- We provide a PDF determination based on Neural Networks.
- We strive to obtain a statistically consistent and unbiased result incorporating all relevant experimental data.

- General class of function constructed from iterarive composition of simple functions.
 - At each node we apply a function to a linear combination of inputs.
 - The coefficients of each combination are the *parameters* $(37 \times 7 \text{ PDFs} = 259 \text{ for NNPDF}).$

NEURAL NET FORMULA

- Universal representation theorem guarantees that some NN can approximate any continuous function.
 - Also successfully used in Machine Learning.

- Universal representation theorem guarantees that some NN can approximate any continuous function.
 - Also successfully used in Machine Learning.
- Use a genetic algorithm to fit parameters.

- Universal representation theorem guarantees that some NN can approximate any continuous function.
 - Also successfully used in Machine Learning.
- Use a genetic algorithm to fit parameters.
- Cross validation is used to avoid overlearning (i.e fitting experimental noise).

- Universal representation theorem guarantees that some NN can approximate any continuous function.
 - Also successfully used in Machine Learning.
- Use a genetic algorithm to fit parameters.
- Cross validation is used to avoid *overlearning* (i.e fitting experimental noise).
- We repeat the procedure many times to obtain a *Monte Carlo Ensemble* of functions representing uncertainty.

Assume we know the underlying function

CLOSURE TESTS

Generate fake data

CLOSURE TESTS

Apply our fitting procedure

CLOSURE TESTS

Verify statistical consistency

REPRESENTATION OF PDF UNCER-TAINTIES

- PDF calculations enter in most High Energy Physics predictions.
 - The computation of PDF uncertainties should be *practical*.

- PDF calculations enter in most High Energy Physics predictions.
 - The computation of PDF uncertainties should be *practical*.
- A Monte Carlo ensemble (as NNPDF provides) has disadvantages:

- PDF calculations enter in most High Energy Physics predictions.
 - The computation of PDF uncertainties should be *practical*.
- A Monte Carlo ensemble (as NNPDF provides) has disadvantages:
 - · Many computations needed to reach precise results.

- PDF calculations enter in most High Energy Physics predictions.
 - The computation of PDF uncertainties should be *practical*.
- A Monte Carlo ensemble (as NNPDF provides) has disadvantages:
 - Many computations needed to reach precise results.
 - Does not interoperate easily with experimental frameworks based on continuous parameter variations.

- PDF calculations enter in most High Energy Physics predictions.
 - The computation of PDF uncertainties should be *practical*.
- A Monte Carlo ensemble (as NNPDF provides) has disadvantages:
 - Many computations needed to reach precise results.
 - Does not interoperate easily with experimental frameworks based on continuous parameter variations.
- A Hessian (Multigaussian) representation is advantageous (trough less general and precise)

• We derived a method, mc2hessian, for converting from Monte Carlo to Hessian representation (arxiv:1505.06736, doi:10.1140/epjc/s10052-015-3590-7).

- We derived a method, mc2hessian, for converting from Monte Carlo to Hessian representation (arxiv:1505.06736, doi:10.1140/epjc/s10052-015-3590-7).
- Significative reduction in the number of computations needed (about a factor 10).

- We derived a method, mc2hessian, for converting from Monte Carlo to Hessian representation (arxiv:1505.06736, doi:10.1140/epjc/s10052-015-3590-7).
- Significative reduction in the number of computations needed (about a factor 10).
- Derive a more advanced iterative procedure to further improve computations for specific processes, giving another factor 10 (following soon).

EXAMPLE

• Official CERN document, to have a high impact for both theorist and experimentalists.

- Official CERN document, to have a high impact for both theorist and experimentalists.
- Practical guidelines for usage of PDFs.
- Based on a combination of PDF determinations from different groups.

- Official CERN document, to have a high impact for both theorist and experimentalists.
- Practical guidelines for usage of PDFs.
- Based on a combination of PDF determinations from different groups.
- mc2hessian is used as a combination method.

ΤΗΑΝΚ ΥΟυ!