

The impact of massive neutrinos on the large-scale structure of the Universe

Internal supervisor: prof. Davide Maino

External supervisors: Dott. Julien Bel [Aix Marseille Université]

Dott. Carmelita Carbone [INAF – Osservatorio Astronomico di Brera]

First Year Ph.D. student workshop Oct 12th 2015 – Università degli Studi di Milano

Neutrinos and Cosmology

Neutrino total mass from beta-decay experiments

$$0.05 {\rm eV} \lesssim \sum_{i} m_{\nu_i} \lesssim 2 \, {\rm eV}$$
 [T. Thummler et al. (2010)]
ArXiv:1012.2282

 Massive neutrinos have an impact on cosmological observables

 Cosmology can help in tightening the constraints on the neutrino total mass

Neutrinos and Cosmology

Neutrino total mas

 $0.05 {\rm eV} \lesssim$

 Massive neutrinos observables

 Cosmology can help in tightening the constraints on the neutrino total mass

Neutrinos and Cosmology

Neutrino total mass from beta-decay experiments

 $0.05 {
m eV} \lesssim \sum_i m_{
u_i} \lesssim 2 \, {
m eV}$ [T. Thummler et al. (2010)]

 Massive neutrinos have an impact on cosmological observables

 Cosmology can help in tightening the constraints on the neutrino total mass

Components of the Universe

Radiation

Components of the Universe

Ordinary Matter ('baryons')

Components of the Universe

The dark side:

Dark matter

Dark Energy (Λ)

ACDM model

- Expanding universe
- We describe Cold Dark Matter as an expanding pressureless fluid:

Otherwise pressure would prevent gravitational collapse!

(another reason for having CDM...)

Structures form! Stars, galaxies...

Isotropy and homogeneity

The APM Galaxy survey Maddox Sutherland Efstathiou & Loveday

Statistical properties

- Count number of objects (N) in spheres of radius R
- Define an overdensity field

 $\delta_R \equiv N/\bar{N} - 1$

- Autocorrelation: $\xi_R(r) = \langle \delta_R(\mathbf{x}) \delta_R(\mathbf{x} + \mathbf{r}) \rangle$
- Power Spectrum: $P(k_1)\delta_D(\mathbf{k}_1 + \mathbf{k}_2) = \langle \delta_{\mathbf{k}_1} \delta_{\mathbf{k}_2} \rangle$

The Power Spectrum

Massive neutrinos Effects on the clustering properties

Viel et al, JCAP (2010)

Massive neutrinos Effects on the power spectrum

Massive neutrinos Effects on the power spectrum

- Fermi-Dirac phase-space distribution → effective pressure
- Effective neutrino pressure **contrasts** the gravity-driven collapse at all scales smaller than a characteristic 'free streaming scale', $\lambda_{\rm fs}$, corresponding to a wavenumber $k_{\rm fs}$

 Damping of neutrino clustering at small scales → reflected also on CDM and galaxy clustering

Massive neutrinos Constraining their mass

• We could use the shape of the measured galaxy power spectrum but...

Galaxies are not all that 'matters'!!!

 Galaxy form only in the densest regions → they are a biased sampling of the total matter distribution

 $P_{\rm gal}(k) = F(P_{\rm tot\,matter}(k))$

Massive neutrinos Constraining their mass

- We can optimally choose to probe scales where non linearities (i.e. small scale physics) are not important
- The relation becomes a simple one!

 $P_{\text{gal}}(k) = b_{\text{lin}}^2 P_{\text{tot matter}}(k)$

 An observable designed specifically to exploit this, the clustering ratio, depends on the power spectrum and is unbiased at linear scales:

[Bel et al, A&A (2014)]

 $\eta_{\rm gal} \equiv \eta_{\rm tot\ matter}$

Want to know more about the clustering ratio? Just ask!

Search for the set of parameters of the model that maximises the likelihood

→ constraints on total neutrino mass

Search for the set of parameters of the model that maximises the likelihood

→ constraints on total neutrino mass

Search for the set of parameters of the model that maximises the likelihood

→ constraints on total neutrino mass

Conclusion

- Cosmology can help in tightening the constraints on neutrino mass
- The distribution of galaxies can be used for this purpose

Measuring its power spectrum (bias!!)

Using some smart observable (clustering ratio)

• What to do?

Theoretical characterisation of clustering ratio Measures of clustering ratio Monte-Carlo Markov Chain runs

. . .

Massive neutrinos Effects on the clustering properties

No neutrinos

Neutrinos

Matter clustering Fluid description

• Matter can be modelled as an expanding fluid, governed by:

$$\begin{cases} \frac{\partial \rho}{\partial t} + \nabla_{\mathbf{r}}(\rho \mathbf{u}) = 0\\ \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla_{\mathbf{r}})\mathbf{u} = \frac{1}{\rho} \nabla_{\mathbf{r}} P + \nabla_{\mathbf{r}} \phi\\ \nabla_{\mathbf{r}}^2 \phi = 4\pi G \rho \end{cases}$$

 With (a bit more than) some algebra, these can be arranged into the linear equation of growth of fluctuations in an expanding fluid:

$$\ddot{\delta} + 2H\dot{\delta} = 4\pi G\bar{\rho}\delta + \frac{c_s^2}{a^2}\nabla^2\delta$$

Matter clustering Fluid description

 Cold Dark Matter is supposed to be pressureless, so we can safely neglect the speed of sound here...

$$\ddot{\delta} + 2H\dot{\delta} = 4\pi G\bar{\rho}\delta + \frac{c_s^2}{a^2}z_{\delta}^2$$

• ...but is it the same for neutrinos?

[spoiler: no!]

They are characterised by a Fermi-Dirac phase-space distribution:

$$f(\mathbf{x}, \mathbf{p}, t) = \frac{1}{e^{-\frac{\mathbf{p}}{T_{\nu}}} + 1}$$

Their density is

$$\rho(\mathbf{x},t) = \frac{g}{(2\pi)^3} \int d^3 \mathbf{p} f(\mathbf{x},\mathbf{p},t) E(\mathbf{p})$$

$$E = \sqrt{|\mathbf{p}|^2 + m_\nu^2}$$

And their pressure

$$P(\mathbf{x},t) = \frac{g}{(2\pi)^3} \int d^3 \mathbf{p} f(\mathbf{x},\mathbf{p},t) \frac{|\mathbf{p}|^2}{E(\mathbf{p})}$$

From density and pressure one can find their effective sound speed

$$c_s = 134.423(1+z) \left[\frac{1 \,\mathrm{eV}}{m_{\nu}}\right] \,\mathrm{km/s}$$

 This is not negligible! When considering massive neutrinos, we will have to solve a system of equations, one for CDM and one for neutrinos → 2 fluid approximation

• 2 fluid approximation:

$$\begin{cases} \ddot{\delta}_{\rm c} + 2H\dot{\delta}_{\rm c} - \frac{3}{2}H^2\Omega_m \left\{ [1-\nu]\delta_{\rm c} + \nu\delta_\nu \right\} \\ \ddot{\delta}_\nu + 2H\dot{\delta}_\nu - \frac{3}{2}H^2\Omega_m \left\{ [1-\nu]\delta_{\rm c} + [\nu - (k/k_{\rm fs})^2]\delta_\nu \right\} \end{cases}$$

Statistical properties

- Count number of objects (N) in spheres of radius R
- Define an overdensity field

 $\delta_R \equiv N/\bar{N} - 1$

- Spatial average $\langle \delta_R \rangle = 0$
- Variance $\sigma_R^2 = \langle \delta_R^2 \rangle$

• Autocorrelation $\xi_R(r) = \langle \delta_R(\mathbf{x}) \delta_R(\mathbf{x} + \mathbf{r}) \rangle$

The Clustering Ratio Motivation

The Clustering Ratio Motivation

But they are not scorrelated!

$$\delta_{g,R}(\mathbf{x}) = F[\delta_{m,R}(\mathbf{x})]$$

 Smoothing on linear scale (and assuming this function to be local)

$$\delta_{g,R}(\mathbf{x}) = b_{lin} \delta_{m,R}(\mathbf{x})$$
$$\xi_{g,R}(r) = b_{lin}^2 \xi_{m,R}(r)$$
$$\sigma_{g,R}^2 = b_{lin}^2 \sigma_{m,R}^2$$

The Clustering Ratio Definition

• Therefore, if we define the clustering ratio as...

$$\eta = rac{\xi(r)}{\sigma^2}$$
 [Bel et al.(2014)]

• ... it ends up having this very good property:

The Simulations DEMNUni

- Dark Energy and Massive Neutrino Universe
 [C. Carbone et al. (2015) in prep, E. Castorina et al, JCAP (2015)]
- Set of 4 simulations with Planck13 cosmology and neutrino mass = { 0, 0.17, 0.30, 0.53 } eV
- CDM mass resolution: ~8x10¹⁰
 Number of CDM particles: 2048³
 Number of neutrino particles: 2048³
 Cubical box of side: 2000 h

~8x10¹⁰ *h* ⁻¹ M_{sun} 2048³ 2048³ 2000 *h* ⁻¹ Mpc

• Run at CINECA by C. Carbone (5x10⁶ cpu hours) using the gadget - III code [Springel et al. (2005), Viel et al. (2010)]