Searches for supersymmetric higgsinos with the ATLAS detector End of the Year Workshop

Lorenzo Rossini

October 11, 2017

Outline

- LHC and the ATLAS detector
- ATLAS pixel detector
- Beyond standard model: Supersymmetry and naturalnes
- Compressed Electroweak spectra analysis: first results

LHC

The Large Hadron Collider is the largest and most powerful accelerator ever built. It provides proton-proton collisions at an energy in the center of mass of $\sqrt{s} = 13$ TeV.

- run 1: 2010 and 2012 data taken period at 7 and 8 TeV
- run 2: 2015 and 2016 data taken period at 13 TeV

- 25 ns bunch spaching
 - four main experiments: ATLAS, ALICE, CMS, LHCb

• $\approx 10^{11}$ protons per bunch

- More data recorded in 2015, 2016, and 2017 (run 2) than ever: $\mathcal{L}_{int} = \int \mathcal{L} dt = 62.9 \text{ fb}^{-1}$
- Number of events = $\sigma_{process} \times \mathcal{L}_{int}$

LHC

The Large Hadron Collider is the largest and most powerful accelerator ever built. It provides proton-proton collisions at an energy in the center of mass of $\sqrt{s} = 13$ TeV.

- run 1: 2010 and 2012 data taken period at 7 and 8 TeV
- run 2: 2015 and 2016 data taken period at 13 TeV

- More data recorded in 2015, 2016, and 2017 (run 2) than ever: $\mathcal{L}_{int} = \int \mathcal{L} dt = 62.9 \text{ fb}^{-1}$
- Number of events = $\sigma_{process} \times \mathcal{L}_{int}$

- $\, pprox 10^{11}$ protons per bunch
- 25 ns bunch spaching
- four main experiments: ATLAS, ALICE, CMS, LHCb

ATLAS Detector

ATLAS detector is divided in sub-detector with a specialized purpose Detector Parts:

- Inner Detector;
- Calorimeters;
 - Electromagnetic
 - Hadronic
- Muon spectrometer;
- Transverse quantity are conserved: p_T, m_T, and E_T.
- *E*^{miss}_T is the negative vectorial sum of all the visible quantities → invisible contributions (e.g. neutrinos)

ATLAS Pixel Detector

Pixel detector is the innermost layer of the ATLAS detector \rightarrow highest flux of particles

Pixel based on silicon p-n junction technology

- 4 main layers with different geometry
 - IBL (planar and 3D technology)
 - B-layer
 - Layer 1
 - Layer 2
- Must be able to distinguish all the different tracks
 - High granularity
 - High precision
- Upgraded (IBL layer) between run 1 and run 2 to account for increasing instantaneous luminosity
- Before run 4 it will be replaced by ITk
 - New design and new technology
 - Even higher instantaneous luminosity

Searches for higgsinos

Radiation Damage in the ATLAS Pixel Detector

High rate of particles means high dose of radiation \rightarrow loss of performance due to radiation damage in the sensors

- MonteCarlo simulation doesn't account for Rad Damage
- Part of my work: Implement Radiation Damage in simulation and validate them on run 2 data
 - Plot: charge collection efficiency of the IBL as a function of integrated luminosity
 - Increase in Bias Voltage reduce effect of Rad Damage

- Use simulation to predict loss of efficiency in run 4
 - work on going
 - Technical Design Report due in December

Beyond the Standard Model

Standard Model current framework. Still different (important) open questions:

- No Dark Matter candidate
- Higgs boson mass divergence

Super Symmetry (SUSY) could solve these problems \rightarrow one superpartner for each SM particle, with 1/2 difference in spin

- New set of particles!
 - allows to cancel out higgs boson divergence
 - ► symmetry broken → different masses
- $\tilde{\chi}^{0}$ and $\tilde{\chi}^{\pm}$ mass eigenstates
 - ▶ SM: B^0 and $W^3 \rightarrow \gamma$ and Z^0
 - SUSY: \tilde{B} , \tilde{W} , and $\tilde{H} \to \tilde{\chi}^0 \tilde{\chi}^{\pm}$
- If $\tilde{\chi}^0$ is stable \rightarrow lightest SUSY particle might be DM candidate

Naturalness and Higgsinos

Higgsino signals

Processes considered: production of $\tilde{\chi}_2^0 \tilde{\chi}_1^0$, $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$, and $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$

- Signature:
 - ISR jet to boost the invisible system
 - Rely on E^{miss} trigger
 - 2 very soft leptons OS
- I^+I^- invariant mass bounded by the mass difference of $\tilde{\chi}^0_2$ and $\tilde{\chi}^0_1$ $(m_{II} < \Delta m(\tilde{\chi}^0_2, \tilde{\chi}^0_1))$
- *m_{II}* distribution depends on the nature of the *X̃*⁰ → different shape for Wino-Bino and Higgsino case
- Main strategy:
 - Look at low m_{II} region
 - Shape fit (separately for *ee* and μμ) the m_{ll} distribution

Signal Region definition

Signal Region (SR) defined by maximising the ratio signal / background

- Optimization refined and harmonised with careful analysis.
- Defined a common SR definition
- Then define *m_{ll}* bins to maximise the exclusion potential

Variable	Requirement
E _T ^{miss}	> 200 GeV
N ³⁰ _{lets}	$\geq 1, \leq 4$
Leading jet $p_T(j_1)$	> 100 GeV, η < 2.8
Sub-leading jets $p_T(j_{2,3,4})$	> 30 GeV, η < 2.8
$\Delta \phi(j_1, \mathbf{p}_T^{\text{miss}})$	> 2.0
N ³⁰ _{b-jet} , 85% WP	Exactly zero
N _{leptons}	Exactly two baseline and two signal
Nature of leptons	SFOS $(e^{\pm}e^{\mp}, \mu^{\pm}\mu^{\mp})$
Leading electron (muon) $p_T^{\ell_1}$	> 5(5) GeV
Subleading electron (muon) $p_T^{\ell_2}$	> 4.5(4) GeV
m _{TT}	Veto [0, 160] GeV
$m_{\ell\ell}$	> 1, < 60 GeV

Variable	Selections optimised for Higgsinos						
$E_{\mathrm{T}}^{\mathrm{miss}}/H_{\mathrm{T}}^{\mathrm{leptons}}$ $\Delta R_{\ell\ell}$ $m_{\mathrm{T}}^{\ell_1}$	> Max (5.0 < 2.0 < 70 GeV), $15 - 2 \cdot m_{\ell}$	ℓ/ GeV)				
SRee-, SRmm- m _{ℓℓ} [GeV]	eMLLa [1, 3]	eMLLb [3.2, 5]	eMLLc [5, 10]	eMLLd [10, 20]	eMLLe [20, 30]	eMLLf [30, 40]	eMLLg [40, 60]
SRSF- m _{ℓℓ} [GeV]	iMLLa < 3	iMLLb < 5	iMLLc < 10	iMLLd < 20	iMLLe < 30	iMLLf < 40	iMLLg < 60

Background Estimation

Main irreducible backgrounds are estimated from MC. \rightarrow need to check validity of prediction. Typical approach is:

observable 1

- Define high background purity region (CR)
 - One region for every main background
 - Define normalisation factors (Scale Factors) for backgrounds: SF = N_{obs}/N_{MC}
- Test normalisation in VR
 - built in the middle between CRs and SRs
 - check sanity of estimation near the SRs
- Extrapolate normalisation in SRs
 - Scale background in SRs
 - Look at data! Excess or not?
- This procedure helps to reduce uncertainties on:
 - cross section
 - integrated luminosity
- Used also Data-Driven technique to describe some of the background not well described by MC

Standard Model Background

Signal region is characterized by very soft leptons with very low m_{ll} . Main background comes mainly from:

fake leptons

- QCD resonances
- Low mass offshell dibosons
- Low mass Drell-Yan process

Different background with different strategy relying on either MC, Control Region (CR), and

Data driven technique and Validation Region.

Background process	Origin in signal region	Estimation strategy
tī, tW	b-jet fails identification	CR using <i>b</i> -tagging
Diboson	Irreducible leptonic decays	CR using $E_{T}^{miss} / \left(p_{T}^{\ell_{1}} + p_{T}^{\ell_{2}} \right)$
$egin{aligned} (Z o au au) + ext{jets} \ (W o \ell u) + ext{jets} \ (Z o ee, \mu\mu) + ext{jets} \end{aligned}$	Irreducible fully leptonic taus Jet fakes second lepton Instrumental ${\cal E}_{ m T}^{ m miss}$	CR using $m_{\tau\tau}$ Fake factor, same sign VR Monte Carlo
Low mass Drell-Yan Other rare processes	Instrumental $E_{ m T}^{ m miss}$ Irreducible leptonic decays	VR and Monte Carlo Monte Carlo

low m_{II} background

At very low m_{ll} there are contributions from resonance (J/ψ) and non resonant processes (DY)

• Resonance:

- E^{miss} based trigger prevent much of this contribution to be significant
- veto J/ψ peak ($m_{J/\psi} = 3.096$ GeV) $\rightarrow 3.0-3.2$ GeV range
- Top plot: data distribution m_{ll} for di-muon channel, after applying trigger
- Non resonant
 - check with Different Flavor Validation Region (VR-DF) and Same Flavor Validation region (VR-VV,bottom plot plot) but with E^{miss}_T/HT_{lep} reversed
 - data driven estimate to check MC prediction

Background Systematic Uncertainties

Two kind of systematic uncertainties affect the Monte Carlo simulation:

- Experimental systematic uncertainties
 - Jet energy scale and resolution
 - E^{miss} modelling
 - Object identification efficiency

- Theoretical systematic uncertainties
 - PDF scale variation
 - Diboson and top modelling

Uncertainty of SRSF-iMLL	[1, 3] GeV	[1, 5] GeV	[1, 10] GeV	[1, 20] GeV	[1, 30] GeV	[1, 40] GeV	[1, 60] GeV
Total background expectation	1.70	3.13	11.65	36.25	46.21	49.69	52.35
Total statistical $(\sqrt{N_{exp}})$ Total background systematic	±1.31 ±1.01 [59.22%]	±1.77 ±1.34 [43.02%]	±3.41 ±2.75 [23.57%]	±6.02 ±7.40 [20.42%]	±6.80 ±8.31 [17.99%]	±7.05 ±8.54 [17.18%]	±7.24 ±8.57 [16.37%]
MC statistical uncertainties Jet Energy Resolution Jet Energy Scale Fake Lepons Estimate uncertainties Theoretical uncertainties Normalization Flavour agging Em ²⁰¹⁴ Modelling Muco Reconstruction Efficiency Electron Reconstruction Efficiency	± 1.51 ± 0.42 ± 0.09 ± 0.26 ± 0.14 ± 0.08 ± 0.16 ± 0.05 ± 0.06 ± 0.03	± 0 ± 0.4 ± 0.34 ± 0.45 ± 0.111 ± 0.071 ± 0.071 ± 0.1	± 0 ± 0.15 ± 0.14 ± 1.94 ± 0.76 ± 0.09 ± 0.6 ± 0.15 ± 0.13 ± 0.21	± 0 ± 1.77 ± 0.78 ± 7.43 ± 1.19 ± 0.86 ± 1.55 ± 1.48 ± 0.33 ± 0.47	± 0 ± 1.81 ± 0.81 ± 9.01 ± 1.65 ± 1.22 ± 2.39 ± 1.36 ± 0.37 ± 0.39	± 0 ± 1.81 ± 0.75 ± 9.26 ± 1.89 ± 1.38 ± 2.73 ± 1.45 ± 0.49 ± 0.41	± 0 ± 1.77 ± 0.84 ± 2.23 ± 1.5 ± 3.15 ± 1.4 ± 0.46 ± 0.33

ATLAS Work in progress

Main source of uncertainties comes from fakes leptons estimate ightarrow main background

Observed Results

Un-blinded results: no excess observed \rightarrow Set limits at 95% Confidence Level on higgsinos masses

- Plot: m_{\parallel} distribution in inclusive SR
- No significant excess
- model dependent limits:
 - Signal + Background hypothesis vs Only Background hypothesis for every signal considered
- Possible also to evaluate model independent limits:
 - limits on the number of possible signal events present compatible with the observed data
 - No assumption on the signal

Different interpretation of the results

Higgsino is not the only interpretation considered for this analysis, could use Wino-Bino scenario

- Wino-Bino production have higher cross section
 - ▶ but different m_{ll} shape (plot)
 - ► Events peaked at higher m_{ll} value → slightly different kinematics
- possibility to reweight event by event to the Wino-Bino distribution and scale up the cross section
- Need also to account for different mass of ${ ilde \chi}_1^\pm$

Conclusion

Compressed Electroweak analysis have been presented

- Very low m_{\parallel} and $p_{\rm T}$ region
- Background estimation:
 - Data driven techniques to estimates Fakes and low m_{ll} DY
 - CR for top, VV and $Z \rightarrow \tau \tau$ events
 - Good agreement data/MC
- No excess observed
 - ▶ higgsino scenario: up to $\tilde{\chi}_2^0 \sim 120 \text{ GeV}$ and mass splitting from 2 to 20 GeV
 - \blacktriangleright wino-bino scenario: up to $\tilde{\chi}^0_2 \sim 150~{\rm GeV}$ and mass splitting from 2 to 40 ${\rm GeV}$
- LEP limits extended
- New interesting results

BACK-UP

Useful variables

Some of the variables used in the SR definition

- E_T^{miss}/HT_{lep}
 - *E*^{miss} over the scalar sum of the leptons *p*_T
 - helpful for small Δm signals
- $m_{ au au}$ (top plot)
 - Reconstruct the $Z \rightarrow \tau \tau$ peak.
 - Different definition in literature
- $\Delta \phi(p_{\mathrm{T}}^{jet1}$, E_{T})
 - Δφ between leading jet and E^{miss}_T
 - ► all the signal is peaked at $\Delta \phi(p_T^{jet1}, E_T) > 2$
- ΔR_{II}

•
$$\sqrt{(\phi_{l1} - \phi_{l2})^2 + (\eta_{l1} - \eta_{l2})^2}$$

Higgsino decays have small value

$m_{ au au}$ definition

 $m_{\tau\tau}$ try to reconstruct the 2 $\tau {\rm s}$ system from the $E_{\rm T}^{\rm miss}$ and the two leptons $p_{\rm T}$ It is defined by

$$m_{\tau\tau}^2 = (p_{\tau_1} + p_{\tau_2})^2 \sim 2p_{l1} \cdot p_{l2}(1 + \zeta_1)(1 + \zeta_2)$$

where $\zeta_{1/2}$ are defined such as

$$p_T^{miss} = \zeta_1 p_T^{/1} + \zeta_2 p_T^{/2}$$

 $m_{\tau\tau}^2$ can be either positive and negative, and the two part aren't symmetrical. $m_{\tau\tau}$ defined as

$$m_{ au au} = sign(m_{ au au}^2)\sqrt{|m_{ au au}^2|}$$

