Antimatter-wave interferometry in QUPLAS

Simone Sala 1° year PhD workshop – 20/10/2016

> UNIVERSITÀ DEGLI STUDI DI MILANO

QUPLAS: QUantum interferometry and gravitation with Positrons and LASers

An experimental project involving people from several institutions:

Just like classical optics ?

• Helmholtz equation:

$$\nabla^2 u(\mathbf{x}) + k^2 n^2(\mathbf{x}) u(\mathbf{x}) = 0 \iff$$
 Classical optics

• Schrödinger equation:

interactions with

the environment

$$\nabla^{2}\psi(\mathbf{x}) + k_{dB}^{2} \underbrace{\left[1 - V(\mathbf{x})/E\right]}_{n^{2}(\mathbf{x})} \psi(\mathbf{x}) = 0 \iff \text{Matter wave optics } !$$

$$\bullet V(r) = -\frac{C_{3}}{r^{3}} \text{ van der Waals atom-surface}$$

$$\bullet V(r) \propto \frac{1}{r^{2}} \text{ Image-charge}$$

$$\overset{\forall (r) \leftarrow \psi_{n}(\xi) = \psi_{n}(\xi) e^{i\phi(\xi)}}{\psi_{n}(\xi) e^{i\phi(\xi)}}$$

$$\overset{\text{"Refractive index"}}{\psi_{n}(\xi) = \psi_{n}(\xi) e^{i\phi(\xi)}}$$

$$\overset{\text{Experimental access to atomic properties, } C_{3}, \alpha, \text{ etc. with a } \psi_{n}(\xi) e^{i\phi(\xi)}}$$

very accurate instrument.

Beyond double slits: Talbot-Lau near-field interferometer

Short, works with uncollimated beams, high flux, and...

 gT^2

Gravity induces a fringe shift $\Delta x = gT^2$

A good gravimeter !

WEP tests on antimatter: motivation

*Annual Review of Cold Atoms and Molecules, **2013**, pp. 473-515

Positronium measurement complementary to antihydrogen

- Matter-antimatter symmetric
- Binding energy is purely electromagnetic

QUPLAS status: preparing for Q-0

Home of the experiment: L-NESS lab (Politecnico di Milano) in Como

Positron beam:

- ²²Na source
- Continuous mode
- Tungsten moderated
- Electostatically guided
- 0-20 keV energy
- 1% energy spread
- Flux : 8 x 10 ³ e⁺/s

Interferometer housing and mumetal shield

Nuclear emulsion technology

...an old technology, still valuable to this day (OPERA, T2K, AEGIS,...)

Working principle is the same as photographic film

Emulsion plates used for early QUPLAS testing

- Gel enriched with AgBr crystals
- Poured on glass substrate for improved stability

Pion discovery, C. Powell 1950

Automated emulsion scanning facility in Bern

- Automated scanning
- Advanced track reconstruction algorithms

The QUPLAS-0 interferometer

We see individual positrons [3] ! (Recall the Tonomura experiment...)

«Asymmetric» Talbot- Lau setup will provide fringe period magnification [1,2]

[1] S. Sala et al., *Phys. Rev. A*, 94 (2016), p. 033625
[2] S. Sala et al., *J. Phys. B: At. Mol. Opt. Phys.*, 48 (2015)
[3] S. Aghion et al., *J. Instrum.*, 11 (2016), p. P06017

Testing emulsions for e⁺ detection

Preliminary experimental test at L-NESS, detector characterization [1]

[1] S. Aghion et al., *J. Instrum.*, 11 (2016), p. P06017

Summary

- Using quantum interference via mechanical gratings
- And direct high-resolution detection with nuclear emulsions
- Aims to improve positronium manipulation techniques

Hopefully leading to a WEP test on positronium

Thank you for your attention !

How accurate do we need to be ?

- No current theory is able to <u>quantitatively</u> predict violations of the WEP in a given system
- What you can do is parametrize the violation and constrain the parameters experimentally

A minimal WEP violating Lagrangian for a composite system reads*:

$$\mathcal{L} = -m_0 c^2 + \frac{1}{2}m_0 v^2 + (m_0 + \delta m_p)U(x)$$

Gravitational potential

*C. Will – Theory and experiment in gravitational physics, **1993**

Result of anomalous coupling between the composite object and the source of U.