

Characterization, performance assessment and data analysis of a drift chamber in the FOOT experiment

Yunsheng Dong

09-10-2018

Ph.D. workshop @ Università degli studi di Milano Statale

Hadrontherapy

- Max dose release in the Bragg peak
- Better dose conformation on the tumor volume, minimizing the damage in the healthy tissues
- Enhanced biological effectiveness for heavy ion therapy (Z>1)
- 71 Proton, 11 C-ion facilities (2018) 174512 patients (1954-2016)

Nuclear interactions

- Proton therapy (50-250 MeV): higher dose release in the entrance channel due to the target fragmentation
- Heavy ion therapy (Z>1; 50-400 MeV/u): dose release beyond the Bragg peak due to the projectile fragmentation
- Difficulties to include these effects in the Treatment Planning Systems due to a lack of experimental data e.g.: Ganil (Carbon ions at 50 and 95 MeV/u, 2011)

FOOT: FragmentatiOn Of Target (Financed by INFN)

3

FOOT goals

Cross section measurements to improve the current Treatment Planning Sistems:

- Projectile Fragmentation:
 C, O beams at 200~400 MeV/u on C,
 C₂H₄ targets
 (direct kinematic)
- Target Fragmentation: protons at 60~250 MeV on C, C_2H_4 targets (inverse kinematic)

Radioprotection in space

Fragmentation cross section measurements to design and optimize the spacecraft shielding:
p, He, Li, C, O beams at ~ 700MeV/u on C, C₂H₄ targets

Radiobiological desiderata

- σ(Z>2) ~ 5%
- dσ/dE ~ 5%
- Z ~ 3%; A ~ 5%

Measurement strategy

Expected average physical parameters for target fragments produced in water by a 180 MeV proton beam				р	
Fragment	E (MeV)	LET (keV/µm)	Range (µm)		
¹⁵ O	1.0	983	2.3		
¹⁵ N	1.0	925	2.5	Direct	
¹⁴ N	2.0	1137	3.6	1.1	H, C, O (95%)
¹³ C	3.0	951	5.4	Kinematic	
¹² C	3.8	912	6.2		
¹¹ C	4.6	878	7.0		
$^{10}\mathbf{B}$	5.4	643	9.9		
⁸ Be	6.4	400	15.7	p	
⁶ Li	6.8	215	26.7		
⁴ He	6.0	77	48.5		
³ He	4.7	89	38.8	Inverse	
^{2}H	2.5	14	68.9	kinomatia	H, C, U (95%)
GoodHead D.T., Radiation protection dosimetry, 122, 2006				Rinemanc	

Inverse kinematic approach

Target fragments ranges are too short. Must adopt an inverse kinematic approach (patient \rightarrow p)

Target material

A pure hydrogen target is difficult to handle. Subtraction of cross sections method

 $\sigma(H) = [\sigma(C_2H_4) - 2\sigma(C)] / 4$

Experimental setup

Two experimental setup:

- Electronic setup: fragments with Z≥3 and θ<10°
- Nuclear Emulsion (Emulsion Cloud Chamber): fragments with Z≤3 and θ≤75°

FOOT Drift Chamber

Beam monitor goals:

- Detect and reject the events in which the primary particle undergoes a nuclear interaction before the target
 - Beam direction measurement
- Reconstruction of the interaction vertex in the target material with the tracking region detectors

FOOT Drift Chamber

- Drift chamber with 6 planes of cells for each view (X-Y), 3 cells of 1.8x1 cm² for each layer. Dimensions: 11 cm x 11 cm x 20 cm
- Ar/CO2 at 80/20%
 - Inherited from FIRST exp. (GSI, 2011)
- Spatial resolution ~ 200 μm
- Reconstruction algorithm and fragmentation studies performed in 2016-2017

Drift chamber: principle of operation

- Ionization: the incident particle looses its energy in the detector material by ionization.
 p + X → p + X* + e⁻ dE/dx ~ z²/β²
- Transport: the electrons drift towards the anode wire driven by the electric field (Ē) shaped by the field wires.
 v_d ~ f(p,Ē,gas)
- Multiplication: the increasing E field close to the anode wire (~10⁵ kV/cm) multiply the e⁻ (Gain ~ 10³ 10⁵) and a 9 signal can be detected.

Drift chamber: principle of operation

- A TDC (Time to Digital Converter) read the time difference between the anode wire signal and an external fast detector signal
- With the space-time relations one can convert the time measurement in a space measurement
- A tracking algorithm fits the drift distances to reconstruct the trajectory

Garfield++ studies

Garfield++ is a toolkit for the simulation of gaseous and semiconductor based detectors

- Calculation of the electric field map for a given anode HV
- Simulation of the charged particle passage and the current signal on the sense wire
- Estimation of the drift velocity and space time relations for different parameters (gas choice, HV, etc..)

11

Experimental development and tests

Gas distribution system setup

- Acquisition and analysis software development
- Beam Monitor experimental setup and acquisition software test @ Milan (7/2018): cosmic rays detection
- Efficiency measurement test @ Trento with protons at 70 Mev – 220 MeV last week (10/2018)

Future perspective

•

C

2018-2019: Electronic setup detectors finalizing test beam Beam monitor space time relations calibration test @ Trento

03/2019: ECC first data taking @ GSI with the Beam Monitor

 12/2019: Electronic setup first data taking with almost complete apparatus @ GSI

• 2020-2021: Data taking with the ¹³ complete apparatus

FOOT collaboration

- 92 members (60% staff)
- 12 INFN Sections/Italian university
- 6 laboratories: Frascati, CNAO, Trento, LNS, GSI (Heidelberg), IPHC (Strasbourg)
- Centro Fermi
- University of Aachen (Ger)
- University of Nagoya (Jap)

Back up

Hadrontherapy vs radiotherapy

Pancreatic tumor treatment planning

- A: Intensity modulated coplanar photon beam (9 beams)
- B: Coplanar proton beam (4 beams)

Abrasion – Ablation model

- A nucleus-nucleus collision model adopted in MC simulations
- Abrasion (10⁻²³ s): formation of excited projectile fragments (fireball) following the initial trajectory without change of velocity
- Ablation(10⁻¹⁶~10⁻²¹ s):

 -Nuclear evaporation: light fragment with Ekin of few MeV
 -Fission (Z ≥ 65)
 -Fermi breakup (A ≤ 17)
 -Photon emission

Foot electronic setup: pre-target region

Start Counter Trigger and TOF measurement

250 µm-1mm thick plastic scintillator

Readout with SiPM

ΔTOF: < 80 ps

Rebuilt from FIRST exp. (GSI, 2011)

Beam Monitor

Beam direction meas.

Drift chamber with 6 planes of cells for each view (X-Y), 3 cells of (1.8x1 cm²) for each layer

Ar/CO2 ~ 80/20%

Spatial res. ~ 200 µm

Inherited from FIRST exp. (GSI, 2011)

Foot electronic setup: tracking region (momentum measurement)

Vertex

4 layers of pixeled silicon detector (20x20 μm)

Spatial resolution: 10µm (X-Y direction); 60µm (Z direction)

Inner tracker

2 layers of pixeled detector as the vertex

Kalman filter

Track reconstruction

•P evaluation

Halbach magnets

- 2 permanent magnets
- B field in Y direction (max ~ 0.8T)

Microstrip Silicon Detector (MSD)

- 3 layers of silicon microstrip detector (120µm x 9 cm)
- Test ongoing

Foot electronic setup: downstream region

Scintillator

•∆E and TOF measurement

- 2 layers of 20 bars of plastic scintillator (400x20x3 mm³)
- Readout with SiPM
 ΔTOF ~ 40 ps for C
 ΔE/E ~ 7%

Calorimeter

BGO inorganic scintillator (2x3x24cm³)

- •145 crystals read by SiPM (50x50µm²)
- Tested at HIT (Aachen Univ.) with C at 200-400 MeV/u

Ekin res ~ 1-2% for C

To be tested at CNAO

20

Charge reconstruction

Z reconstruction study based on FLUKA simulation:¹⁶O at 200MeV/u on C₂H₄

 $-\frac{dE}{dx} \propto \frac{z^2}{\beta^2}$

- Scintillator ~ dE/dx; TOF ~ β
- ¹H~9.0%
 ⁴He~3.0%
 ⁷Li~2.7%
 ⁹Be~2.2%
 ¹¹B~2.0%
 ¹²C~2.0%
 ¹⁴N~2.0%
 ¹⁶O~2.0%

Charge misidentification < 1%

Mass identification

- Redundant measurement
- σ(A)/A ~ 3-4%
- Isotope separation under study

Emulsion cloud chamber

- Z≤3; θ≤75°
- Three sections:

 -charged particle tracking: layers of emulsion films and target (C/C2H4)
 -charge id.: emulsion films only
 -momentum meas.:layers of emulsion films and passive material(Lead/Steel)

- ECC system tested at HIMAC (Japan) with C at 400 MeV/u for Z id.
- Tested at INFN-LNS (Catania) and Trento with new emulsion films from Nagoya Univ.

ECC performances

Charge separation

Z ∝dE/dx ∝ grain density ∝ track volume Charge identification efficiency ~ 99%

Isotope separation (preliminary study)

Particle range and multiple coulomb scattering measurements could provide a isotope identification